Cape Buffalo, Bison and Water

By Bianca T. Esposito, NWNL Research Intern
(Edited by Alison M.  Jones, NWNL Director)

NWNL research intern Bianca T. Esposito is a senior at Syracuse University studying Biology and minoring in Economics. Her research this summer is on the intertwined relationships of biodiversity and our water resources. This is Bianca’s second blog on Biodiversity for NWNL. Read her first blog on wild Salmon here.

This blog compares how water impacts the health of sub-Sahara’s Cape buffalo populations to how North America’s bison impact the health of our water resources.  This investigation covers three of our NWNL case study watersheds: Africa’s Mara and Nile River Basins, and North America’s Mississippi River Basin.

The Cape buffalo (Syncerus caffer caffer) is found in Kenya’s Mara River Basin savanna and Uganda’s Nile River Basin plains. The bison (Bison bison) used to dominate the Mississippi River Basin’s Great Plains and are still there in scattered small populations. Both species are large, herbivorous mammals that primarily graze on tall-grass ecosystems. However, their habitats and connections to water differ significantly.

Africa’s Cape buffalo migrate seasonally in large herds on cyclical routes dependent on fluctuations in water availability. They move out of areas with limited resources and into areas where moisture and nutrients are available. Cape buffalo also migrate away from their habitat when water levels increase, since flooding restricts their foraging abilities. In these cases, Cape buffalo move to a drier habitat where, in turn, they may experience drought. Either way, when resources become low, their vulnerability becomes high.

Jones_090927_K_9062.jpgA lone Cape Buffalo bull in Kenya’s Mara Conservancy (© Alison M. Jones)

Africa’s famed Serengeti-Mara Ecosystem is located throughout northern Tanzania and extends into Kenya. Much of this region is situated within the Mara River Basin. In the Serengeti National Park, the migration pattern of the Cape buffalo, similar to that of the wildebeest-zebra migration, is dependent on the fluctuation of rainfall each year. Generally, this journey begins in April when Cape buffalo depart their southern plains habitat to head north. This movement is triggered by the onset of heavy rain that floods the plains, reducing the Cape buffalo’s ability to graze. By May the herd is in the northwest Serengeti, where the dry season lasts through July and proximity to the equator allows rainfall to be more evenly distributed, allowing greater opportunities for foraging. Then, in August, the late dry season hits, causing the herd to move further north. On their venture north, they cross the Mara River into Kenya’s Maasai Mara National Reserve. The Cape buffalo remain here enjoying green pastures until November, albeit subject to drought if there’s no rainfall. In December, usually the first rainfall comes which they sense as the onset of the rainy season. They then trek back into Tanzania’s southern plains for the wet season. From January to April, they graze there on plentiful, nutritious grasses.  

Syncerus-caffer-Masaai-Mara-Kenya.JPGHerd of Cape buffalo in Kenya’s Mara Conservancy (Creative Commons)

When Cape buffalo inhabit dry lands their reproductive success (also referred to as “recruitment ability”) decreases; but their body condition improves due to what seems to be a fat-storing mechanism that anticipates limited future resources. One benefit of Cape buffalo having to cope with drought is that when food supplies are reduced, they forage through peat layers in dried-up underground channels, releasing nutrients otherwise trapped below ground.

A current major concern for this species is that anthropogenic factors (human activity) causing climate change are expected to increase both water levels and drought, which could push the Cape buffalo outside of their protected areas. In 2017, the Serengeti experienced a drought that lasted over a year causing declines in populations of many species, including Cape buffalo. Drought also causes herds of cattle, goats and sheep outside to enter protected lands to graze, creating a competition for resources between wildlife, livestock and humans in both the Maasai Mara National Reserve and Serengeti National Park. If the Mara River – the only major river in the area – dries up, there would be few resources for ungulates. As well, when droughts end, there is always potential for flash-floods which deter herds from crossing rivers to find greener pastures.

Jones_120107_K_0640.jpgA lone Cape Buffalo bull in Kenya (© Alison M. Jones)

When water is scarce in the Serengeti, a decline of Cape buffalo leads to increased lion mortality. When Cape buffalo lack sufficient food due to drought, they become weak and must travel increased distances to quench their thirst. This leaves the herd fatigued, causing some members to fall behind and thus become more vulnerable to predation. Also, after a drought and the rains begin, Babesia-carrying ticks infect Cape buffalo. Infected buffalo become weak or die, allowing easy predation by lions. Unfortunately, their carcasses transfer babesiosis disease to lions. Alone, this disease is not fatal to the lion. However, babesiosis coupled with canine distemper virus (CDV) is lethal.

Babesiosis from Cape buffalo has caused two major declines in Serengeti lion populations. In 1994, a third of the lion population was lost due to this combination, killing over 1,000 lions.

Lions_taking_down_cape_buffalo.jpgLions taking down a Cape buffalo (Creative Commons)

On a smaller scale, in 2001 the Ngorongoro Crater lion population also lost about 100 lions due to this synchronization of disease. Craig Packer, a University of Minnesota biologist, stated, “Should drought occur in the future at the same time as lions are exposed to masses of Babesia-carrying ticks—and there is a synchronous CDV epidemic–lions will once again suffer very high mortality.” He also warns that extreme weather due to climate change puts species at greater risk to diseases not considered a major threat before.  Fortunately, mud-wallowing that Cape buffalo use to cool down their bodies is also an effective shield against infiltrating bugs and ticks once the mud dries.

Overall, Cape buffalo rely heavily on rainfall patterns; but climate change is disrupting traditional migratory patterns by raising water levels or causing drought. Both extremes present negative impacts to the Mara River Basin and the biodiversity that inhabits it.  

North America’s bison – a bovine counterpart to African Cape buffalo – historically occupied The Great Plains west of the Mississippi River. Early settlers recorded 10 to 60 million bison openly roaming the fields. Like Cape buffalo, bison also migrate in search of food. Their migration paths used to cover vast territory, thus paving the way for many current roads and railroads. A major threat to  bison – as with most species – has been habitat loss due to human infringement, as well as well-documented, extensive hunting by new settlers heading west. By 1889, only approximately 1,000 bison remained in North America.

Jones_121024_TX_6814.jpgFarmed bison in Texas (© Alison M. Jones)

Due to recent conservation efforts, bison populations are rising; however, not to past numbers. Currently, they are found only in National Parks, refuges and farms. As of 2017, approximately 31,000 pure wild bison remain in 68 conservation herds. “Pure wild bison” are those not bred with cattle for domestication. However, only approximately 18,000 of the remaining population “function” as wild bison. This count excludes very small bison herds used for research, education and public viewing – or bison held in captivity waiting to be culled by protected areas such as Yellowstone National Park due to required limits.

Bison inhabiting the Mississippi River Basin, which drains throughout the Great Plains, have many positive impacts on its waterways and tributaries. Yellowstone Park, where the Yellowstone River drains into the Missouri-Mississippi River system, is the only place in North America where bison continue to freely roam as they used to. In Yellowstone, bison occupy the central and northern area of the park where they migrate by elevation, seasonally choosing food according to abundance, rather than quality. In the winter, they select lower elevations near thermal hot springs or rivers where there is less snow accumulation.

Bison positively affect water supplies when they wallow and paw at the ground. This results in intense soil compaction that creates soil depressions in grasslands. After many years, this soil depression tends to erode since bison don’t like to wallow on previously-created depressions. However, during the rainy season, wetland plants and vegetation grow in these wallows created by bison dust-bathing and trampling. For a short time many species enjoy these ephemeral pool habitats before they disappear in droughts or floods. Meanwhile bison wallows increase species diversity that would otherwise not be present in grasslands.

A_bison_wallow_is_a_shallow_depression_in_the_soil.jpgBison rolling around in a dry wallow (Creative Commons)

Bison have other positive impacts on water. As they trample through streams, they widen available habitat and alter water quality. Even after a bison dies, it can still contribute to the health of its ecosystem. Their carcasses are a nutritious food source for wolves, coyotes and crows. Studies suggest that bison carcasses take roughly seven years to fully decompose, during which time their remains release nutrients such as phosphorus and carbon into rivers. These nutrients sustain microbes, insects, fish and large scavengers of the area. A bison carcass can also provide sustenance for local fish since maggots, green algae and bacteria grow over their bones during decomposition. Bison carcasses also deposit nutrients into the soil which fertilizes plant regrowth.

Bison can negatively affect water resources, by decreasing native plant diversity due to overgrazing. However, they graze on only grass, which allows forbs (non-woody flowering plants) to flourish, adding biodiversity in grasslands. As well, when bison urinate, they deposit nitrogen into the soil, a key nutrient for grass growth and survival. Their urine also becomes a selectable marker allowing them to return to formerly-grazed pastures during the season. This constant reselection of grassland, allows combustion in ignored, non-grazed pastures, since fire tends to occur in tall grass with nitrogen loss. After fires, the bison are attracted to newly-burned watersheds because of C4-dominated grass which grows in dry environments. Bison select C4-dominated grassy areas because they have low plant diversity, unlike less-frequently burned sites where forbs are abundant. Thus, bison’s pasture preferences allow for more biodiversity, creating healthier watersheds.  

Jones_121024_TX_7314.jpgMural near of Native Americans on bison near Masterson, Texas (© Alison M. Jones)

Each of these two similar bovine species have significant, but different, relationships to water availability and quality within their river basins.  The African Cape buffalo migration is guided by water fluctuations. This could impact their future since anthropogenically-caused climate change could incur longer and more frequent droughts and increased flood-water levels to an extent that would drive Cape buffalo out of their protected habitats. In contrast, North American bison herds improve the health of waterways in the Mississippi River Basin in several ways. Nutrients from their decomposing carcasses add to the health of tributary streams and rivers; and their mud wallows support greater diversity of wetland and grassland flora.

Whether we look at watersheds in Africa or North America, it is clear that it is as important to study how biodiversity is affected by water availability, as how watershed water quality and quantity affects its biodiversity. Any changes to these ecosystems due to climate change could drastically affect the biodiversity and health of these watersheds.

Bibliography:

Briske, David. Springer Series on Environmental Management, accessed June 19, 2018, via link.
van Wyk, Pieter. MalaMala Game Reserve Blog, accessed on June 19, 2018, via link.
Bennitt, Emily. Journal of Mammalogy, accessed on June 19, 2018, via link.
Wilcox, Bradford. Springer Series on Environmental Management, accessed June 19, 2018, via link.
Chardonnet, Philippe. Gnusletter, accessed on June 19, 2018, via link.
Defenders of Wildlife, accessed on June 20, 2018, via link.
Coppedge, Bryan R.
The American Midland Naturalist, accessed on June 20, 2018, via link.
Polley, H. Wayne.
The Southwestern Naturalist, accessed on June 20, 2018, via link.
Crow, Diana.
Smithsonian, accessed on June 20, 2018, via link.
Knapp, Alan K.
American Institute of Biological Sciences, accessed on June 20, 2018, via link.
North Arizona University, accessed on June 25, 2018, via link.Dybas, Cheryl Lyn.
BioScience, accessed on June 25, 2018, via link.
Water Resources and Energy Management (WREM) International Inc., accessed on June 25, 2018, via link.
Defenders of Wildlife, accessed on June 26, 2018, via link.
Yellowstone National Park, accessed on June 26, 2018, via link.
Huffman, Brent. Ultimate Ungulate, accessed on June 26, 2018, via link.
Department of Primary Industries, accessed on July 9, 2018, via link.
Popescu, Adam. New Scientist, accessed on July 9, 2018, via link.
Hoagland, Mahlon B. Exploring the Way Life Works: The Science of Biology, accessed on July 9, 2018E, via link.
White, PJ. Yellowstone Association, accessed on July 9, 2018, via link.

Wild and Scenic River: Missouri River

The Missouri River is the longest U.S. river – longer even than the Mississippi River into which it flows.  Two sections of the Missouri River that flow between Nebraska and South Dakota have been protected from development under the Wild and Scenic River Act, established in 1968.  Fifty-nine miles were added on November 10, 1978, and thirty-nine miles on May 24, 1991.  Taken together,  ninety-eight miles of the Missouri River have been classified as being of “Recreational” importance, based on their many access points, roads, railroads, and bridges.  The designated areas are from Gavins Point Dam to Ponca State Park NEB and from Ft. Randall Dam to the Lewis and Clark Lake.

According to the National Wild and Scenic Rivers System website, these two designated stretches of the Missouri River are among the last free-flowing segments of the river, and thus still exhibit the river’s dynamic character in its islands, bars, chutes and snags – characteristics that make it a “braided river.” The Missouri River is the primary western tributary to the Mississippi River, a NWNL case study watershed. For more information about the these reaches of the Missouri River, view the NWNL 2017 Missouri River – Nebraska Expedition on our website.

The following pictures are from that expedition and the 2017 Central Platte River Basin expedition. For more information about the Wild and Scenic Rivers Act read the first part of this blog series.

Jones_170612_SD_3685

Jones_170612_NE_4406-2

Jones_170612_NE_4405-2

Jones_170612_NE_3786

Jones_170612_NE_3783
Jones_170611_NE_4017

Jones_170611_NE_3657

 

All photos © Alison M. Jones.

 

Sources:  

https://www.rivers.gov/rivers/missouri-ne-sd.php

World Wetlands Day 2018

World Wetlands Day – February 2, 2018
blog by Sarah Kearns, NWNL Project Manager

BOT-OK-107.jpgOkavango Delta, Botswana, Africa

What are “wetlands”?

Synonyms: Marsh, fen, bog, pothole, mire, swamp, bottomlands, pond, wet meadows, muskeg, slough, floodplains, river overflow, mudflats, saltmarsh, sea grass beds, estuaries, and mangroves.

Jones_070605_BC_1624.jpgDevelopment on edge of Columbia Wetlands, British Columbia

Worldwide, wetlands regulate floods, filter water, recharge aquifers, provide habitat, store carbon, and inspire photographers & artists.

Jones_111024_LA_8655.jpgCyprus trees in Atchafalaya River Basin Wetlands, Louisiana

Wetlands control rain, snowmelt, and floodwater releases: mitigation that is more effective and less costly than man-made dams. Nearly 2 billion people live with high flood risk – This will increase as wetlands are lost or degraded.

Jones_091004_TZ_2124.jpgFishing boats among invasive water hyacinth in Lake Victoria, Tanzania

Wetlands absorb nitrogen and phosphorous which provides cleaner water downstream for drink water supplies, aquifers and reservoirs.

Jones_091002_TZ_1209.jpgWoman collecting water in Maseru Swamp, Tanzania

Wetlands absorb heat by day and release is at night, moderating local climates.

Jones_111021_LA_2490.jpgRed-earred turtles in Bluebonnet Swamp, Baton Rouge, Louisiana

We all need the clean air, water, and protection from flooding that wetland forests provide. But up to 80% of wetland forests in the US South have disappeared. What are our standing wetland forests worth? Let’s be sure we invest in our wetland forests. (From dogwoodalliance.org)  Worldwide, we must protect our wetlands.

Jones_150817_AZ_5849.jpgSouthern tip of Lake Havasu and incoming Williams River and its wetlands, Arizona

To learn more about World Wetlands day visit http://www.worldwetlandsday.org.

All photos © Alison M. Jones.

 

NWNL “Pool of Books” 2017

NWNL has compiled a list of new and old favorite books about water issues and our case-study watersheds for your reference for gifts and for the New Year. Many of the authors and publishers are personal friends of NWNL. All of them are worth reading. The links provided below go to Amazon Smile, where a portion of all purchases go to an organization of the buyers choice. Please help support NWNL by selecting the International League of Conservation Photographers to donate to.

Jones_170612_NE_3783

Global:

Rainforest by Lewis Blackwell (2014)

Replenish: The Virtuous Cycle of Water and Prosperity by Sandra Postel (2017)

Water from teNeues Publishing (2008)

North America:

The Salish Sea: Jewel of the Pacific Northwest by Audrey Della Benedict & Joseph K. Gaydos (2015)

Rancher, Farmer, Fisherman: Conservation Heroes of the American Heartland by Miriam Horn (2016)

The Last Prairie: A Sandhills Journal by Stephen R. Jones (2006)

Yellowstone Migration by Joe Riis (2017)

Sage Spirit: The American West at a Crossroads by Dave Showalter (2015)

Heartbeats in the Muck: The History, Sea Life, and Environment of New York Harbor by John Waldman (2013)

East Africa:

Serengeti Shall Not Die by Bernhard & Michael Grzimek (1973)

Turkana: Lenya’s Nomads of the Jade Sea by Nigel Pavitt (1997)

To the Heart of the Nile: Lady Florence Baker and the Exploration of Central Africa by Pat Shipman (2004)

India:

A River Runs Again: India’s Natural World in Crisis, from the Barren Cliffs of Rajasthan to the Farmlands of Karnataka by Meera Subramanian (2015)

World Conservation Day 2017

In honor of World Conservation Day, NWNL wants to share some of it’s favorite photographs from over the years of each of our case-study watersheds.

Trout Lake in the Columbia River Basin
Jones_070630_WA_5507

 

Aerial view of the largest tributary of the Lower Omo River
Ethiopia: aerial of Mago River, largest tributary of Lower Omo River

 

Canoeing on the Mississippi River
Jones_140920_LA_3950-2

 

Fisherman with his canoe on the shore of Lake Tana, source of the Nile River
Ethiopia: Lake Tana, source of the blue Nile, fisherman and canoe on the shore.

 

Wildebeests migrating toward water in the Mara Conservancy
K-WIB-410.tif

 

Raritan River at sunset
Jones_090515_NJ_4585

 

All photos © Alison M. Jones.

Floods: A Photo Essay

In honor of those devastated by the recent flooding all over the world, including Texas and Florida in the United States, the Caribbean, Africa and across Southeast Asia, NWNL takes a look at photos from our archives of flooding in our case study watersheds.

Columbia River Basin

Jones_070607_BCa_0058In British Columbia, Columbia River flooding from melting snow pack and storms, threatens barns and farmlands.  (2007)

Jones_070607_BC_1989Barn and truck underwater in British Columbia from Columbia River flooding due to melting snow pack and storms.  (2007)

 

Mississippi River Basin

MO-STG-411Mississippi River flood of 1993, St Genevieve, Missouri.

USA:  Missouri, West Alton, road flooded in the Mississippi River flood of 1993Road flooded in West Alton, Missouri during the Mississippi River flood of 1993.

 

Raritan River Basin

Jones_110311_NJ_7383 A submerged park bench during the spring floods in Clinton, New Jersey, part of the South Branch of the Raritan River Basin. (2011)

Jones_110311_NJ_7451 Hamden Road flooded near Melick’s bridge in Clinton, New Jersey, part of the South Branch of the Raritan River Basin. (2011)

 

Omo River Basin

Jones_070919_ET_0261_MDassenech village, located on the Omo Delta in Ethiopia, flooded by the Omo River and polluted by livestock effluent. (2007)

Jones_070919_ET_0289_MGranary hut built on stilts on a flooded plain in the Dassenech village in Ethiopia. (2007)

 

Posted by Sarah Kearns, NWNL Project Manager.

All photos © Alison M. Jones.

2016 Flooding in Vicksburg and a NWNL 2014 Interview with US Army Corps of Engineers

Jones_140922_MS_4086

THIS WEEK’s RECORD-BREAKING MISSISSIPPI RIVER FLOOD

View full-size map
View full-size map

This winter’s costly Mississippi River Flood is now predicted to crest at Vicksburg on Friday Jan 15 at approximately 52 feet – 9 feet above the USGS official flood level.  The home of the US Army Corps of Engineers, Vicksburg has known great changes in its river hydrology.  In 1876, the Mississippi took a dramatic shortcut across DeSoto Point, per this map illustration No Water no Life photographed on its 2014 Lower Mississippi River expedition.  Let’s hope there is no damage this winter during this current, historic flood.  And let’s hope there are no further rains between now and the time the crest reaches New Orleans.

FLOOD HISTORY of VICKSBURG (since the Civil War)

In 1876:  The Mississippi River course changed and shifted west, leaving Vicksburg without any riverfront.  Thus the U.S. Army Corps of Engineers diverted the Yazoo River to the old riverbed.  This forced the creation of what is now the Yazoo Diversion Canal, where today’s modern Vicksburg port is located.

Flood of 1927:  The Upper Mississippi and Ohio Valleys experienced well-above-average rainfall in the fall of 1926.  The rain kept coming.  By January 1927 nearly all of the Mississippi River and its tributaries were above flood stage.  In April 1927, the levees began to fail causing massive areas to flood.  In all the Mississippi River breached the levee in 145 places, flooding 27,000 square miles.  Hundreds of thousands of people were homeless and were unable to return to their property until the waters receded, nearly 8 months after the rains began.

Jones_140923_MS_4541

The 1927 flood inundated 27,000 square miles along the lower reaches of the Mississippi River, then populated by more than 900,000 people.  For months in spring and summer of 1927, water covered the lower Mississippi River floodplain and tributaries.  It turned nearly all the cotton fields into a lake of tens of thousands of square miles.

Hundreds of thousands of people were impacted by floods that sent torrents of dirty water into their towns and homes, especially in African American communities.  Many Vicksburg families left for northern cities, such as St. Louis, Chicago and Detroit.  This urban migration drastically reduced the labor class and desperate landowners created forced-work camps to keep their farms going.

Jones_140923_MS_4542

The US Government determined that such a disaster should never be repeated.  The US Army Corps of Engineers [henceforth, USACE] since has put in place plans, designs and infrastructure to mitigate such disasters.

TALKING WITH THE USACE IN VICKSBURG, SEPT. 2014

Jones_140923_MS_4548

Per a No Water No Life USACE interview with Kent Parrish, Noah Vroman and Tommy Hengst, there seems to be reason to be optimistic this month as floodwaters again race and rage through the Lower Mississippi Valley.  Certainly greater riverside development means protection is even more critical, and thankfully it comes at a time when the USACE understands the need for more coordination with water interests.

Jones_140923_MS_4551

As the strength and frequency of storms has increased, the terminology of the Corps has been changed to decrease the level of expectations.  The USACE claim of providing “Flood protection” has now been reduced to insuring “Flood Risk Reduction.”  As well, there are new rules for new types of floods, such as this historically high and unusual winter flood.

The USACE states its approach to regional dam and levee safety has become more rigorous as aged infrastructure poses large maintenance challenges.  Both technological and visual inspections are now used to determine needed strengthening.

Jones_140923_MS_4602

Our two-hour interview yielded journal notations citing impressive rigor by the USACE to adapt to changing demands in the face of changing weather events.  Those interviewed also expressed the determination by the USACE to never become slipshod in its maintenance responsibility.

The USACE of Engineers will certainly be busy this month and for a while to come, assessing their preparations for extreme events and the impacts of such unprecedented pressure on their infrastructure from St Louis, past Cairo where the Ohio River enters the Mississippi, and down to Memphis, Vicksburg, Natchez, Baton Rouge and New Orleans.

Jones_140902_LA_2345

Blog by Alison M. Jones, Director of NWNL

[Source of images and information:  The Lower Mississippi River Museum and Interpretive Site, Vicksburg]