Cape Buffalo, Bison and Water

By Bianca T. Esposito, NWNL Research Intern
(Edited by Alison M.  Jones, NWNL Director)

NWNL research intern Bianca T. Esposito is a senior at Syracuse University studying Biology and minoring in Economics. Her research this summer is on the intertwined relationships of biodiversity and our water resources. This is Bianca’s second blog on Biodiversity for NWNL. Read her first blog on wild Salmon here.

This blog compares how water impacts the health of sub-Sahara’s Cape buffalo populations to how North America’s bison impact the health of our water resources.  This investigation covers three of our NWNL case study watersheds: Africa’s Mara and Nile River Basins, and North America’s Mississippi River Basin.

The Cape buffalo (Syncerus caffer caffer) is found in Kenya’s Mara River Basin savanna and Uganda’s Nile River Basin plains. The bison (Bison bison) used to dominate the Mississippi River Basin’s Great Plains and are still there in scattered small populations. Both species are large, herbivorous mammals that primarily graze on tall-grass ecosystems. However, their habitats and connections to water differ significantly.

Africa’s Cape buffalo migrate seasonally in large herds on cyclical routes dependent on fluctuations in water availability. They move out of areas with limited resources and into areas where moisture and nutrients are available. Cape buffalo also migrate away from their habitat when water levels increase, since flooding restricts their foraging abilities. In these cases, Cape buffalo move to a drier habitat where, in turn, they may experience drought. Either way, when resources become low, their vulnerability becomes high.

Jones_090927_K_9062.jpgA lone Cape Buffalo bull in Kenya’s Mara Conservancy (© Alison M. Jones)

Africa’s famed Serengeti-Mara Ecosystem is located throughout northern Tanzania and extends into Kenya. Much of this region is situated within the Mara River Basin. In the Serengeti National Park, the migration pattern of the Cape buffalo, similar to that of the wildebeest-zebra migration, is dependent on the fluctuation of rainfall each year. Generally, this journey begins in April when Cape buffalo depart their southern plains habitat to head north. This movement is triggered by the onset of heavy rain that floods the plains, reducing the Cape buffalo’s ability to graze. By May the herd is in the northwest Serengeti, where the dry season lasts through July and proximity to the equator allows rainfall to be more evenly distributed, allowing greater opportunities for foraging. Then, in August, the late dry season hits, causing the herd to move further north. On their venture north, they cross the Mara River into Kenya’s Maasai Mara National Reserve. The Cape buffalo remain here enjoying green pastures until November, albeit subject to drought if there’s no rainfall. In December, usually the first rainfall comes which they sense as the onset of the rainy season. They then trek back into Tanzania’s southern plains for the wet season. From January to April, they graze there on plentiful, nutritious grasses.  

Syncerus-caffer-Masaai-Mara-Kenya.JPGHerd of Cape buffalo in Kenya’s Mara Conservancy (Creative Commons)

When Cape buffalo inhabit dry lands their reproductive success (also referred to as “recruitment ability”) decreases; but their body condition improves due to what seems to be a fat-storing mechanism that anticipates limited future resources. One benefit of Cape buffalo having to cope with drought is that when food supplies are reduced, they forage through peat layers in dried-up underground channels, releasing nutrients otherwise trapped below ground.

A current major concern for this species is that anthropogenic factors (human activity) causing climate change are expected to increase both water levels and drought, which could push the Cape buffalo outside of their protected areas. In 2017, the Serengeti experienced a drought that lasted over a year causing declines in populations of many species, including Cape buffalo. Drought also causes herds of cattle, goats and sheep outside to enter protected lands to graze, creating a competition for resources between wildlife, livestock and humans in both the Maasai Mara National Reserve and Serengeti National Park. If the Mara River – the only major river in the area – dries up, there would be few resources for ungulates. As well, when droughts end, there is always potential for flash-floods which deter herds from crossing rivers to find greener pastures.

Jones_120107_K_0640.jpgA lone Cape Buffalo bull in Kenya (© Alison M. Jones)

When water is scarce in the Serengeti, a decline of Cape buffalo leads to increased lion mortality. When Cape buffalo lack sufficient food due to drought, they become weak and must travel increased distances to quench their thirst. This leaves the herd fatigued, causing some members to fall behind and thus become more vulnerable to predation. Also, after a drought and the rains begin, Babesia-carrying ticks infect Cape buffalo. Infected buffalo become weak or die, allowing easy predation by lions. Unfortunately, their carcasses transfer babesiosis disease to lions. Alone, this disease is not fatal to the lion. However, babesiosis coupled with canine distemper virus (CDV) is lethal.

Babesiosis from Cape buffalo has caused two major declines in Serengeti lion populations. In 1994, a third of the lion population was lost due to this combination, killing over 1,000 lions.

Lions_taking_down_cape_buffalo.jpgLions taking down a Cape buffalo (Creative Commons)

On a smaller scale, in 2001 the Ngorongoro Crater lion population also lost about 100 lions due to this synchronization of disease. Craig Packer, a University of Minnesota biologist, stated, “Should drought occur in the future at the same time as lions are exposed to masses of Babesia-carrying ticks—and there is a synchronous CDV epidemic–lions will once again suffer very high mortality.” He also warns that extreme weather due to climate change puts species at greater risk to diseases not considered a major threat before.  Fortunately, mud-wallowing that Cape buffalo use to cool down their bodies is also an effective shield against infiltrating bugs and ticks once the mud dries.

Overall, Cape buffalo rely heavily on rainfall patterns; but climate change is disrupting traditional migratory patterns by raising water levels or causing drought. Both extremes present negative impacts to the Mara River Basin and the biodiversity that inhabits it.  

North America’s bison – a bovine counterpart to African Cape buffalo – historically occupied The Great Plains west of the Mississippi River. Early settlers recorded 10 to 60 million bison openly roaming the fields. Like Cape buffalo, bison also migrate in search of food. Their migration paths used to cover vast territory, thus paving the way for many current roads and railroads. A major threat to  bison – as with most species – has been habitat loss due to human infringement, as well as well-documented, extensive hunting by new settlers heading west. By 1889, only approximately 1,000 bison remained in North America.

Jones_121024_TX_6814.jpgFarmed bison in Texas (© Alison M. Jones)

Due to recent conservation efforts, bison populations are rising; however, not to past numbers. Currently, they are found only in National Parks, refuges and farms. As of 2017, approximately 31,000 pure wild bison remain in 68 conservation herds. “Pure wild bison” are those not bred with cattle for domestication. However, only approximately 18,000 of the remaining population “function” as wild bison. This count excludes very small bison herds used for research, education and public viewing – or bison held in captivity waiting to be culled by protected areas such as Yellowstone National Park due to required limits.

Bison inhabiting the Mississippi River Basin, which drains throughout the Great Plains, have many positive impacts on its waterways and tributaries. Yellowstone Park, where the Yellowstone River drains into the Missouri-Mississippi River system, is the only place in North America where bison continue to freely roam as they used to. In Yellowstone, bison occupy the central and northern area of the park where they migrate by elevation, seasonally choosing food according to abundance, rather than quality. In the winter, they select lower elevations near thermal hot springs or rivers where there is less snow accumulation.

Bison positively affect water supplies when they wallow and paw at the ground. This results in intense soil compaction that creates soil depressions in grasslands. After many years, this soil depression tends to erode since bison don’t like to wallow on previously-created depressions. However, during the rainy season, wetland plants and vegetation grow in these wallows created by bison dust-bathing and trampling. For a short time many species enjoy these ephemeral pool habitats before they disappear in droughts or floods. Meanwhile bison wallows increase species diversity that would otherwise not be present in grasslands.

A_bison_wallow_is_a_shallow_depression_in_the_soil.jpgBison rolling around in a dry wallow (Creative Commons)

Bison have other positive impacts on water. As they trample through streams, they widen available habitat and alter water quality. Even after a bison dies, it can still contribute to the health of its ecosystem. Their carcasses are a nutritious food source for wolves, coyotes and crows. Studies suggest that bison carcasses take roughly seven years to fully decompose, during which time their remains release nutrients such as phosphorus and carbon into rivers. These nutrients sustain microbes, insects, fish and large scavengers of the area. A bison carcass can also provide sustenance for local fish since maggots, green algae and bacteria grow over their bones during decomposition. Bison carcasses also deposit nutrients into the soil which fertilizes plant regrowth.

Bison can negatively affect water resources, by decreasing native plant diversity due to overgrazing. However, they graze on only grass, which allows forbs (non-woody flowering plants) to flourish, adding biodiversity in grasslands. As well, when bison urinate, they deposit nitrogen into the soil, a key nutrient for grass growth and survival. Their urine also becomes a selectable marker allowing them to return to formerly-grazed pastures during the season. This constant reselection of grassland, allows combustion in ignored, non-grazed pastures, since fire tends to occur in tall grass with nitrogen loss. After fires, the bison are attracted to newly-burned watersheds because of C4-dominated grass which grows in dry environments. Bison select C4-dominated grassy areas because they have low plant diversity, unlike less-frequently burned sites where forbs are abundant. Thus, bison’s pasture preferences allow for more biodiversity, creating healthier watersheds.  

Jones_121024_TX_7314.jpgMural near of Native Americans on bison near Masterson, Texas (© Alison M. Jones)

Each of these two similar bovine species have significant, but different, relationships to water availability and quality within their river basins.  The African Cape buffalo migration is guided by water fluctuations. This could impact their future since anthropogenically-caused climate change could incur longer and more frequent droughts and increased flood-water levels to an extent that would drive Cape buffalo out of their protected habitats. In contrast, North American bison herds improve the health of waterways in the Mississippi River Basin in several ways. Nutrients from their decomposing carcasses add to the health of tributary streams and rivers; and their mud wallows support greater diversity of wetland and grassland flora.

Whether we look at watersheds in Africa or North America, it is clear that it is as important to study how biodiversity is affected by water availability, as how watershed water quality and quantity affects its biodiversity. Any changes to these ecosystems due to climate change could drastically affect the biodiversity and health of these watersheds.

Bibliography:

Briske, David. Springer Series on Environmental Management, accessed June 19, 2018, via link.
van Wyk, Pieter. MalaMala Game Reserve Blog, accessed on June 19, 2018, via link.
Bennitt, Emily. Journal of Mammalogy, accessed on June 19, 2018, via link.
Wilcox, Bradford. Springer Series on Environmental Management, accessed June 19, 2018, via link.
Chardonnet, Philippe. Gnusletter, accessed on June 19, 2018, via link.
Defenders of Wildlife, accessed on June 20, 2018, via link.
Coppedge, Bryan R.
The American Midland Naturalist, accessed on June 20, 2018, via link.
Polley, H. Wayne.
The Southwestern Naturalist, accessed on June 20, 2018, via link.
Crow, Diana.
Smithsonian, accessed on June 20, 2018, via link.
Knapp, Alan K.
American Institute of Biological Sciences, accessed on June 20, 2018, via link.
North Arizona University, accessed on June 25, 2018, via link.Dybas, Cheryl Lyn.
BioScience, accessed on June 25, 2018, via link.
Water Resources and Energy Management (WREM) International Inc., accessed on June 25, 2018, via link.
Defenders of Wildlife, accessed on June 26, 2018, via link.
Yellowstone National Park, accessed on June 26, 2018, via link.
Huffman, Brent. Ultimate Ungulate, accessed on June 26, 2018, via link.
Department of Primary Industries, accessed on July 9, 2018, via link.
Popescu, Adam. New Scientist, accessed on July 9, 2018, via link.
Hoagland, Mahlon B. Exploring the Way Life Works: The Science of Biology, accessed on July 9, 2018E, via link.
White, PJ. Yellowstone Association, accessed on July 9, 2018, via link.

Buzz Numbers

By NWNL Director, Alison Jones

As NWNL plans its website redo (to launch this fall), we envision “Buzz Numbers” on the home page.  What?  Well, “Buzz Numbers,” are our Project Manager Sarah’s take-off on “buzz words.”  Just another great tool to quickly project complex concepts.  So, while in that mode, here’s a NWNL BLOG with 0 references to specific watersheds and just 1 URL link. The Buzz Numbers below refer to values of, or impacts on, all rivers and streams in the Americas or East Africa, the 2 regions where NWNL case-study watersheds are located.

Jones_160319_CA_1544.jpgDrought in California, 2016

BUZZ NUMBERS for The Americas

  • 13%: The Americas’ share of world’s human population
  • >50%: Share of Americans with a water security problem
  • 50%: Decrease in renewable freshwater available per person since 1960s
  • 200-300%: Increase in human ecological footprint since 1960s
  • >95%: Tall grass prairies lost to human activity since pre-European settlement
  • >50%: US wetlands lost (90% in agricultural regions) since European settlement
  • 15–60%: American drylands habitat lost between 2000 and 2009
  • 5 million hectares [3.7 million acres]: Great Plains grassland lost from 2014 to 2015
  • $24.3 trillion: terrestrial nature’s annual economic contribution (=GDP)
    Jones_080530_WY_1866.jpgGrey Wolf in Yellowstone National Park, 2008

Projections for 2050 in the Americas

  • 20%: expected population increase (to 1.2 billion) by 2050
  • +/-100%: expected growth in GDP by 2050, driving biodiversity loss if ‘business as usual’ continues
  • 40%: loss of biodiversity expected by 2050 if climate change continues
———-
Jones_040828_ET_0050.jpgVillagers in Lalibela, Ethiopia with erosion in foreground, 2004

BUZZ NUMBER Trends / Data for Africa

  • +/- 500,000: km2 [123 million acres] degraded by deforestation, unsustainable agriculture, overgrazing, uncontrolled mining activities, invasive alien species and climate change – causing soil erosion, salinization, pollution, and loss of vegetation or soil fertility
  • +/- 62%: rural population using wild nature for survival (the most of any continent)
  • +/- 2 million km2 [494 million acres]: land designated as protected
  • 25%: Sub-Saharans suffering hunger and malnutrition (2011–2013) in the world’s most food-deficient region
Jones_130118_K_1688.jpgCommercial fisherman preparing to sell in Nairobi, 2013

Economic Values of Nature’s Contributions East Africans

  • $1.2 billion: annual inland fishery value added
  • $16,000: annual food production per km2 [247 acres
  • $12,000: annual forest carbon sequestration per km2 (247 acres])
  • $11,000: annual erosion control per km2 [247 acres]

All our Buzz Number stats come from the Appendix of an ISPBES Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services March 2018 Report, sponsored by UN

Jones_120125_K_5464.jpgWoman collecting water from spring in Mau Forest, Kenya, 2012

 

All photos © Alison M. Jones.

What We’re Reading #1

Introducing a new semi-regular blog series: What We’re Reading!  For two months this winter, our NWNL Director Alison Jones was in Kenya. Among the many interviews and trips to the Omo and Mara River Basins, Alison was also busy reading during this expedition. The goal of this new blog series is to share the books NWNL reads and give you ideas of books to read about our watersheds!

Ruaha National Park: An Intimate View

ruahanationalpark.jpgWritten by Alison’s new acquaintance Sue Stolberger, this is the first field guide to trees, flowers and small creatures found in Ruaha National Park, and surrounding Central Tanzania. While not part of one of NWNL’s watersheds, flora and fauna within Ruaha National Park are very similar to that of Tanzania’s Serengeti National Park that is within the Mara River Basin.

 

 

 

 

 

Rivergods: Exploring the World’s Great Wild Riversrivergods.jpg

In this wonderfully photographed book, Richard Bangs & Christian Kallen raft down rivers across the globe. The first chapter covers the Omo River in Ethiopia, one of NWNL’s case-study watersheds, which the book calls the “River of Life.”

 

 

 

 

Ethiopia: The Living Churches of an Ancient Kingdom

livingchurches.jpg

Nigel Pavitt, an informal advisor to NWNL on the Nile and Omo River Basins and Carol Beckwith a friend of NWNL Director Alison Jones are two of the photographers for this stunning large-format book tracing art, culture, ecclesiastical history and legend in Ethiopia’s Blue Nile River Basin.

 

 

 

 

 

 

Web Design: Make Your Website a Success

webdesign.jpg

Finally, NWNL would like to make a special announcement:  we are re-designing our website!  In preparation for that,  Alison  read a helpful book by Sean McManus on easy steps to designing websites. Simultaneously, a team of experts were working with our Project Manager in our NYC office, so the process is already underway.  By the end of summer we will unveil our new website!

Amboseli Wetlands

by Pongpol Adireksarn for No Water No Life
Edited by Alison Jones, NWNL Director

Amboseli Wetlands 1.jpg

Kilimanjaro is Africa’s highest and most well-known mountain. The Maasai call it “Ol Dolnyo Oibor” (The White Mountain) because of its snow-capped top, a symbolic landmark for centuries. Besides being picturesque, Kilimanjaro has lived up to its reputation as “The Life-giving Mountain.” It has provided water for millions of wildlife, people and their livestock in a semi-desert area with less than 340 mm [13.3 in] of rainfall annually. Amboseli National Park, a popular Kenyan safari destination, lies below the lower northern shoulders of this “Rooftop of Africa.”

In 1991 an effort began to conserve the biodiversity of Amboseli; support development of local human populations; and improve the park’s infrastructure. UNESCO and the Government of Kenya designated Amboseli National Park and its surrounding area as a “Man and the Biosphere Reserve.”

[Editor’s Note: The Man and the Biosphere Programme is an intergovernmental, scientific program launched in 1971 by UNESCO. Using science, education and economics, this program establishes benefits to human communities while safeguarding surrounding ecosystems and wildlife. Its World Network of Biosphere Reserves currently counts 669 sites in 120 countries]

Amboseli Elephant 1.jpg

On a 2005 visit to Amboseli, I saw the toll climate change is taking on Kilimanjaro: the alarming sight of less snow on the mountaintop. My most recent visit in October 2017 was disheartening. From a distance I saw only a small area of snow remaining on top of Kilimanjaro. I recalled the assessment that Kilimanjaro has lost 80 % of its snow cover since 1912; and that by 2033 the snows of Kilimanjaro would no longer exist.

Amboseli Great White Pelican.jpg

I drove deeper into the park, remembering that 12 years ago I saw a mirage of water everywhere I looked. However the mirage I saw on this drive started to disappear. Instead, what I saw before me were wide wetlands filled with water on both sides of the road. As I continued on, there were bulldozers and heavy equipment dredging these wetlands and laying large concrete pipes on both sides of the road. My local guide explained that the park is expanding the wetlands by filling existing swamps with more of the water that flows down from Kilimanjaro via underground channels.

Amboseli Elephant 3.jpg

This development fulfills the objectives set for Amboseli National Park by the Man and the Biosphere Programme. In a land of world-famous elephant matriarchs, this program is creating biodiversity havens to benefit wildlife in the immediate area of the park, while also supporting Maasai and their livestock living near the park.

Amboseli Hippo 1.jpg

The next morning, passing through an arid area with Kilimanjaro in the background, I saw a large herd of elephants walking towards the wetlands to drink and bathe. An hour later as I went closer to a wetlands, I saw several elephants and ungulates enjoying their time in the swamp. More wildlife arrived at the wetlands as the day continued. A family of hippopotamus occasionally left the swamp to graze, Hundreds of great white pelicans, winter migrants from Eastern Europe, were enjoying pleasant weather on an island in the swamp under sunny skies.

Amboseli Elephant 4.jpg

My local guide took me to Observation Hill, overlooking the vast Amboseli wetlands. As we walked up the hill, I noticed two large signs put up by International Fund for Animal Welfare (IFAW) and Kenya Wildlife Service (KWS). One sign coined two apt phrases, “Kilimanjaro, The Life-Giving Mountain,” and “Without Kilimanjaro, Many Lives would Cease!” The other sign read, “Where Life Springs Up In A Desert.” Addressing national – and indeed global – issues, it noted, “While many wetlands in Kenya dwindle and lose biodiversity because of destructive and unchecked human activities, this protected oasis will remain a source of life. Only if man does not adversely affect it.”

 

Pongpol Adireksarn was born in Bangkok, Thailand, and received a Bachelor Degree in International Relations from Lehigh University, USA, and a Master Degree in the same field from American University, USA. Elected four times as a Member of Parliament from Saraburi Province, he was appointed Minister of Foreign Affairs, Minister of Tourism and Sports, Minister of Agriculture and Cooperatives, Minister of Education, and Deputy Prime Minister. Pongpol wrote several novels in Thai and English using his real name and the pen name “Paul Adirex”.  In the past nine years, Pongpol has been producer and host of a television documentary program on world heritage sites which has led him to many national parks and wildlife reserves all over the world, prompting him to become seriously interested in wildlife threatened species.
All photos © Pongpol Adireksarn.

NWNL “Pool of Books” 2017

NWNL has compiled a list of new and old favorite books about water issues and our case-study watersheds for your reference for gifts and for the New Year. Many of the authors and publishers are personal friends of NWNL. All of them are worth reading. The links provided below go to Amazon Smile, where a portion of all purchases go to an organization of the buyers choice. Please help support NWNL by selecting the International League of Conservation Photographers to donate to.

Jones_170612_NE_3783

Global:

Rainforest by Lewis Blackwell (2014)

Replenish: The Virtuous Cycle of Water and Prosperity by Sandra Postel (2017)

Water from teNeues Publishing (2008)

North America:

The Salish Sea: Jewel of the Pacific Northwest by Audrey Della Benedict & Joseph K. Gaydos (2015)

Rancher, Farmer, Fisherman: Conservation Heroes of the American Heartland by Miriam Horn (2016)

The Last Prairie: A Sandhills Journal by Stephen R. Jones (2006)

Yellowstone Migration by Joe Riis (2017)

Sage Spirit: The American West at a Crossroads by Dave Showalter (2015)

Heartbeats in the Muck: The History, Sea Life, and Environment of New York Harbor by John Waldman (2013)

East Africa:

Serengeti Shall Not Die by Bernhard & Michael Grzimek (1973)

Turkana: Lenya’s Nomads of the Jade Sea by Nigel Pavitt (1997)

To the Heart of the Nile: Lady Florence Baker and the Exploration of Central Africa by Pat Shipman (2004)

India:

A River Runs Again: India’s Natural World in Crisis, from the Barren Cliffs of Rajasthan to the Farmlands of Karnataka by Meera Subramanian (2015)

Drought: A Photo Essay

From 2014 until the beginning of 2017  California suffered through a major drought. It was a hot topic in the news, and NWNL conducted five Spotlight Expeditions to document and bring attention to that drought and its significance.  But what exactly is a drought? What causes droughts?  What are the effects of droughts? What does a drought look like?

Jones_070607_BC_1958
Boat launch, Kinbasket Lake Reservoir, BC, Canada. 2007

Jones_070607_BC_1963
Kinbasket Lake Reservoir, BC, Canada. 2007

Basicplanet.com defines a drought as a “lengthy period of time, stretching months or even years in which time land has a decrease in water supply.” Droughts usually occur when rain doesn’t fall often enough during prolonged periods of warmer temperatures, causing high pressure winds and and reduced water content.

NA-SK-109.tif
Aerial  of dry river bed, Skeleton Coast National Park, Namibia. 2006

Jones_090921_K_1821
El Molo Swamp in Mau Forest during Kenya drought of 2009

Human activity can also be the cause of drought. Deforestation, farming, excess irrigation and erosion can lead to drought. Climate change also creates drought. Rises in average global temperatures greatly effect the possibility of drought, by reducing water content in the air.

Jones_150813_CA_4202Rio Hondo River, a tributary of Los Angeles River, California. 2015

Jones_140207_CA_9687Dried up succulent in the Santa Ynez Valley, California. 2014

There are many more affects of drought than most people realize. The most obvious affect is the shortage of water. Because of this, crops and animals will die. Droughts lead to malnutrition, dehydration and deadly famines. Wildfires and dust storms are much more probable and common effects. Industries that rely on water are forced to cutback, thus forcing people into unemployment. Wars have occurred due to droughts.

Jones_150813_CA_4124

Jones_140323_CA_4310

USA: California, Kettleman City, sign about effects of drought and no waterSigns posted during the California Drought,  2014 – 2016.

 

Posted by Sarah Kearns, NWNL Project Manager.

All photos © Alison M. Jones.

Lion Populations to Decline by Half

 

East Africa, Kenya, Mara River Basin, lioness with cubs
East Africa, Kenya, Mara River Basin, lioness with cubs

Lions are currently considered “vulnerable” by the International Union for Conservation of Nature, but if upcoming assessments change their status to “endangered” they will be considered at “a very high risk of extinction in the wild”.  Scientists estimate that a mere 20,000 lions are left in all of Africa and that number will be halved in 20 years.

NWNL would like to honor these majestic animals by sharing some of our favorite lion images from our expeditions. We hope that recent public outrage over the death of Cecil, will draw attention to the plight of the African lion and boost conservation efforts.

Read related articles in the NY Times and on BBC World News.

(Click on thumbnails to enlarge.)

Kenya: Maasai Mara Game Reserve, head of large-maned male lion lying in grasses
Kenya: Maasai Mara Game Reserve, head of large-maned male lion lying in grasses

Posted by Jasmine Graf, Associate Director of No Water No Life.