Water Issues Along Egypt’s Nile River

By Joannah Otis for No Water No Life

This is the 8th blog in our series on the Nile River in Egypt by NWNL Researcher Joannah Otis, sophomore at Georgetown University. This essay addresses some of today’s most pressing water issues in the Nile River Basin. [NWNL expeditions have covered the Upper Nile, but due to current challenges for US photojournalists in Egypt and Sudan, NWNL is using literary and online resources to investigate the Lower Nile.]

Over the past few years, water shortages, river pollution and saltwater intrusion have increasingly plagued Egypt. These issues are exacerbated by a population that’s grown by 41% since the early 1990’s.  In the next 50 years, the population is expected to double, yet Egypt has a very limited water supply. Egypt receives only 80 millimeters of rain per year, and so the Nile River provides 97% of its freshwater. This increasingly industrialized nation also faces a profusion of pollution in the Nile River coming from chemical runoff and industrial waste.1 As well, the Nile River Delta is experiencing saltwater intrusion due to its sinking northern corners.2 These three issues – among others – demand changes if Egypt and its Nile River are to continue to be healthy, functioning entities.

13_Nile_River_in_AswanThe Nile River near Aswan. Attribution: Sherif Ali Yousef

With one of the world’s lowest per capita water shares, Egypt barely meets its water needs today – and yet it also needs to prepare for millions of additional people in coming years. Only 6% of Egypt is arable agricultural land, with the rest being desert.  Inefficient water irrigation, uneven water distribution, and misuse of water resources have all contributed to Egypt’s current dire situation.The country faces a yearly water deficit of about 7 billion cubic meters. Its water comes from nonrenewable aquifers, meaning they cannot be recharged or reused once they are dry.

Despite these pressures, many farmers use an unproportionate amount of water by continuing to employ outdated and inefficient irrigation techniques. One of these is “basin irrigation,” where entire fields are flooded with water that evaporates or is later drained off. Ancient Egyptians used the same practice to water their crops, but then the population was much lower and as a result, water was more plentiful. The approximately 18,000 miles of canals supplying today’s farmers also contribute to water waste, because evaporation in the canals absorbs about 3 billion cubic meters of Nile River water per year.4

Env_contamination1.ifThe Pesticide Runoff Process
Attribution: Roy Bateman

Water pollution is particularly significant in the Nile River Delta where factories and industrial plants have sprung up. These companies often drain dangerous chemicals and hazardous materials into the river, causing fish and other aquatic wildlife to suffer. A large number of fish deaths, due to high levels of lead and ammonia, has been reported. Bacteria and metals in the water are particularly harmful. The agriculture sector also contributes to water pollution via pesticide and herbicide runoff.5 This toxic combination of pollutants has been known to cause liver disease and renal failure in humans.6

Saltwater intrusion is another large concern for the Nile River Delta, which is slowly sinking at a rate of 8 millimeters per year. This is an alarming amount since the Mediterranean Sea is rising about 3 millimeters per year and the Delta plain is only one meter above sea level. Although only the northern third of the delta is affected, saltwater intrusion could spell disaster for area crops if they do not adapt to soil with a high salinity.7  Further crop threats come from the lack of silt filtering downriver. This silt once provided enough nutrients to the fields that farmers did not have to apply synthetic fertilizers. With the construction of the Aswan High Dam, however, silt was blocked upstream and the Nile Delta suffers as a result.8

egypt_tmo_2014290_lrgAerial view of the Nile River Delta

The Nile River Basin is facing a plethora of largely human-driven issues from pollution to water overuse. In order to preserve the Nile River and its people, various steps are needed to protect its environs. Solutions include passing legislation to prevent industries from dumping hazardous waste, building more sewage treatment plants, and transferring silt downstream as natural fertilizer. Action is needed to save Egypt’s famous Nile, and it needs to be done with haste.


1 Dakkak, Amir. “Egypt’s Water Crisis – Recipe for Disaster.” EcoMENA. 22 July 2017. Web.
2 Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
3 Kuo, Lily. “The Nile River Delta, once the bread basket of the world, may soon be uninhabitable.” Quartz Africa. 16 March 2017. Web.
4 Dakkak, Amir. “Egypt’s Water Crisis – Recipe for Disaster.” EcoMENA. 22 July 2017. Web.
5 Dakkak, Amir. “Egypt’s Water Crisis – Recipe for Disaster.” EcoMENA. 22 July 2017. Web.
6 Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
7 Kuo, Lily. “The Nile River Delta, once the bread basket of the world, may soon be uninhabitable.” Quartz Africa. 16 March 2017. Web.
8World Wildlife Foundation. “Nile Delta flooded savanna.” October 3, 2017. Web.

Egyptian Irrigation Technology Through the Ages

By Joannah Otis, for No Water No Life (NWNL)

This is the 7th blog in the NWNL series on the Nile River in Egypt by NWNL Researcher Joannah Otis, a sophomore at Georgetown University. This essay addresses irrigation techniques used along the Nile River. [NWNL has completed documentary expeditions to the White and Blue Nile Rivers, but due to current challenges for photojournalists visiting Egypt and Sudan, NWNL is using literary and online resources to investigate the availability, quality and usage of the main stem of the Nile.]

For millennia, the Nile River has been vital to the livelihoods and lives of the Egyptian people. From agriculture and livestock to drinking and cleaning, Egypt relies on the Nile for almost all of its freshwater needs.1 Given the importance of this river, it has been necessary for the people living on its banks to understand and control its power. This necessity has manifested in the development and construction of technology designed to maximize agricultural outputs, both in present day Egypt and in Ancient Egypt.

800px-LevelBasinFloodIrrigationModern Basin Irrigation
Attribution: Jeff Vanuga

Beginning in 3000 BCE, irrigation systems became commonplace along the Nile River.Large, flat-bottomed basins and a series of canals were built to irrigate fields. Water was allowed to flow through the manmade ditches by way of simple gates. During the flooding season, water was directed onto the fields so the rich silt carried by the river’s flow could be adequately deposited. Flood water generally laid on the fields for forty to sixty days until is was drained off and sent on its way towards the Mediterranean.3 The earliest depiction of basin irrigation, and therefore the earliest evidence of it, dates from 3,100 BCE in a stone relief that shows one of the final predynastic kings digging a ditch in a grid network with a hoe. Today, one can still see canals snaking along the flanks of the Nile as farmers continue to utilize ancient irrigation techniques.4

Kairo_Nilometer_BW_1Cairo Nilometer
Attribution: Berthold Werner

In an attempt to regulate water distribution and calculate crop taxes, the Ancient Egyptians developed a structure known as the nilometer to measure flood waters. This stone well accessed via limestone steps was engraved with marks that officials used to determine taxation. Two of the best preserved nilometers are located in Cairo and on Elephantine Island at Aswan, although about two dozen have been found in total. The Cairo nilometer is composed of a large pit extending below the Nile’s water level with three tunnels connecting it to the river. Forty-five steps lead down to the well to allow for easy reading, which was determined by marks on a marble octagonal column with a corinthian capital in the center of the structure. Water levels were consistently recorded at this nilometer between 622 CE and 1845 CE.5 The Elephantine Island nilometer was also actively used to record water levels and was likely part of a temple complex dedicated to Hapi, the God of Nile flooding.6 Today, water distribution is regulated by the Aswan High Dam, which was officially opened in 1971.7

Elephantine Island Nilometer
Attribution: Olaf Tausch

The Nile River has been the lifeline of Egypt for thousands of years. In spite of modern technology and irrigation developments, it continues to have a life of its own. Just as the Ancient Egyptians worshipped its powers, so should we respect its ecosystems and natural tendencies because the success of the Nile River Basin is contingent on the health of the mighty Nile River.


1 Holmes, Martha; Maxwell, Gavin; Scoones, Tim. Nile. BBC Books. 2004.
“Nile River.” The Ancient Near East: An Encyclopedia for Students, edited by Ronald Wallenfels and Jack M. Sasson, vol. 3, Charles Scribner’s Sons, 2000, pp. 137-138. World History in Context.
“Ancient Irrigation.” University of California Davis. 1999. Web. Accessed 16 October 2017.
4 Postel, Sandra. “Egypt’s Nile Valley Basin Irrigation.” WaterHistory.org. 1999. Web. Accessed 16 October 2017.
5 “The Nilometer in Cairo.” WaterHistory.org. Web. Accessed 16 October 2017.
6 Miller, Mark. “Ancient structure that measured the Nile for tax purposes uncovered in Egypt.” Ancient-Origins.net. 20 May 2016. Web. Accessed 16 October 2017.
7 Caputo, Robert. “Journey up the Nile.” National Geographic. p 582. May 1985.


Lake Erie: A Solution to Vulnerability

By Judy Shaw, with Wil Hemker and John Blakeman for NWNL
(Edited by NWNL Director, Alison Jones)

Judy Shaw, professional planner and NWNL Advisor, and Wil Hemker, entrepreneurial chemist, are partnering with John Blakeman to promote prairie nutrient-retention strips as a proven way to protect Lake Erie’s water. They are encouraging schools and farmers in northwest Ohio to install demonstration strips and teach this effective means to stop harmful runoff from damaging our waterways. NWNL has documented this runoff problem in all its case-study watersheds and applauds this natural solution to chemical pollution of our waterways.

Untitled.jpgUpland prairie nutrient-retention strip. Photo by John Blakeman.

Imagine a very large body of fresh water supplying residents along 799 miles of shoreline with the very essence of their natural health. Lake Erie is such a vessel; carrying over 126 trillion gallons of precious water and serving millions of people in cities both in the USA and Canada. One such city is Toledo, Ohio. There, water from the Maumee River, which flows directly into the Western Basin of Lake Erie, provides fresh water to many in the region. Up to 80 million gallons of water is drawn from Lake Erie every day to supply Toledo and other municipalities with treated drinking water. 2

However, runoff from agricultural lands taints the water with phosphorous. In 2014 runoff caused extensive blooms of green algae, creating toxic microcystins – toxins produced by freshwater cyanobacteria, also called blue-green algae.3 This rendered the water on which the city relied as undrinkable. Today, four years later, continued flows of phosphorus-laden water still make this treasured natural resource vulnerable.

So what can be done? 

Many scientists have studied the problem. They’ve universally agreed that rainfall runoff from row-crop fields, suburban and urban land, and roadways is the root of the problem. As the City of Toledo rushes into a $500 million upgrade to its water treatment plant, the source remains completely uncontrolled.4

Jones_130520_IL_8783.jpgRunoff from row-crop fields after rain, Illinois.

Fortunately, solutions to manage rainfall runoff pollution are at hand. 

Through the work of many dedicated Midwest scientists, it has been determined that the presence of tallgrass prairies and seasonal, agricultural “cover crops”5 can arrest the phosphorous and nitrogen that historically has streamed directly into feeder streams and large watersheds like the Maumee River Basin.

On the matter of cover crops, it is important to note that wheat is planted in closely-spaced rows. Non-row crops include hay and alfalfa, planted en masse, not in rows. Alfalfa, because it is grown as a crop and is harvested, is not generally regarded as a cover crop. Cover crops are seldom, if ever, “cropped,” or harvested. Instead they are killed, or die, and left on the soil surface. Generally, cover crops are not true cash crops in the sense of harvesting and marketing.

Ohio prairie researcher John Blakeman found that edge-of-field strips of perennial tallgrass prairies can absorb algal nutrients in storm-water runoff, thus protecting the waterway while also enriching the prairie plants, or forbs. The tallgrasses and forbs (“wildflowers”) of native tallgrass prairies include big bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), switch grass (Panicum virgatum) and a dozen or more species. All of these once grew naturally in northwest Ohio and exist today in a few “remnant prairie” ecosystems. Thus tallgrass prairies can be commercially planted with success in Ohio.

From John’s research with colleagues and published supportive findings from Iowa State University, he developed methods of planting a robust mix of native Ohio prairie species. He has planted them in several sites, including the NASA Glenn Research Center’s large Plum Brook Station near Sandusky, Ohio. Iowa State University has proved the ability of the prairie plants to absorb the renegade nutrients. The critical step is to persuade those engaged in Ohio agriculture to plant 30–60’ strips of tallgrass prairie species along the downslope edges of row-crop fields, where runoff water percolates before draining downstream to Lake Erie.

Jones_130520_IA_8937.jpgTallgrass Prairie, University of Southern Iowa.

Criticality? High. 

With these strips, Iowa research shows that up to 84% of the nitrogen runoff and 90% of the phosphorous can be captured by the plants, and the water running into the river is virtually clean. The levels of nitrogen and phosphorus exiting the field can no longer foster blooms of toxic green algae, such as those that crippled Toledo’s water supply in 2014.

Vulnerability beyond Lake Erie?

Non-point source pollution (i.e. sediment and nutrient runoff from ever-more-intense rainfall events onto rural row-crop fields, suburban fertilized lawns, and massive expanses of roadway and urban pavement) lies at the root of Lake Erie’s problem. This problem however extends beyond harmful algal blooms in streams, lakes, and Toledo’s drinking water source. It is the cause of huge hypoxic zones in the Great Lakes, the Gulf of Mexico (from the Mississippi River drainage), and North American eastern coastal waters.

Some good news?

Several Ohio farmland stakeholders are listening and learning about prairie grass strips at field edges. They are considering how to research and demonstrate upland prairie nutrient-retention strips so more farmers, in time, might use this algal nutrient-suppression practice. Expansive adoption of these strips will reduce phosphorous and nitrogen runoff from agricultural lands, helping obviate harmful algal blooms in Lake Erie.

Jones_130520_IA_8938.jpgTallgrass Prairie, University of Southern Iowa.

All communities need to reduce non-point source pollution. There are many ecological practices communities can practice, including:

  • decreasing suburban and urban pavement
  • increasing tallgrass and forb plantings
  • designing prairie and wetland drainage swales
  • conserving water use

If we all understand the sources of pollution and commit to take action, it will only be a matter of time before other watersheds in Ohio and across the country increase their water quality by using upland prairie nutrient-retention strips and thus also expand green spaces.

How can you be part of the solution?

First, become informed. Many US federal, state and community governments are measuring and attempting to act on non-point source pollution. Learn more about your state and community programs.

Second, take action by changing your and your family’s personal water use. Change your home and neighborhood water and rainwater practices. Here are some suggestions from The Nature Conservancy.

Jones_130520_IA_8935.jpgTallgrass Prairie, University of Southern Iowa.

Lastly, connect back with No Water No Life. Let us know how you and your neighbors outreach to community, state, and federal government leaders is changing infrastructure and community water resource practices.

The strongest governments on earth cannot clean up pollution by themselves. They must rely on each ordinary person, like you and me, on our choices, and on our will.  –2015 Chai Jing, Chinese investigative reporter, and documentary film maker.



1The capacity, over 127 trillion gallons, is extrapolated from USEPA Lake Erie Water Quality report, which notes the water volume as 484 cm3.
2 Toledo Division of Water Treatment.
3 The Florida DEP states, “Microcystins are nerve toxins that may lead to nausea, vomiting, headaches, seizures and long-term liver disease if ingested in drinking water.”
4 US News.
5 Cover crops are quick-growing, short-lived, low-height plants planted to give full coverage of bare soil, in the dormant seasons, (fall, winter, early spring). They are short-lived; serve only to cover the soil to reduce erosion; and retard growth of weeds before row-crops are planted.


All photos © Alison M. Jones unless otherwise stated.

Aswan High Dam Leaves an Environmental Legacy

by Joannah Otis for No Water No Life

This is the second our blog series on “The Nile River in Egypt” by NWNL Researcher Joannah Otis, sophomore at Georgetown University. Following her blog “Finding Hapi-ness on the Nile,” this essay addresses perhaps the greatest elements of change created thus far by humans along the Nile. [NWNL has completed documentary expeditions to the White and Blue Nile Rivers, but due to current challenges for photojournalists visiting Egypt and Sudan, NWNL is using literary and online resources to investigate the availability, quality and usage of the Nile in those regions.]

Aswan_DamAswan Dam on the Nile River in Aswan, Egypt

Background on Aswan High Dam

The Nile River snakes south to north for 4,160 miles through ten North African countries until it reaches the Mediterranean Ocean.1 Its path is interrupted only by the great Aswan High Dam, which has brought both good and bad to the Egyptian people. Towering 364 feet tall and stretching 12,565 feet along its crest, the Aswan High Dam is impressive.2 This dam was opened in 1971 after a decade of construction and seeking funds from the Soviet Union.3 Its transboundary reservoir, Lake Nasser, which backs up into Sudan for 300 miles, holds nearly two years’ worth of water from the Nile River.

Benefits of the Aswan High Dam & Lake Nasser

The High Dam, replacing a 1902 Low Dam, annually generates more than 10 billion kilowatt hours of electricity, facilitating Egypt’s path to industrialization. This new dam also marked a major shift in Egypt’s agricultural prospects. Previously, Nile River Basin farmers were forced to depend on fickle seasonal flooding, which could bring appropriate levels of water one year and often completely washed away soil the next. Such unpredictability made it hard to grow a reliable crop; and the Nile’s single flooding season precluded farmers from having more than one harvest per year.

Lake Nasser’s surplus of water has well served the irrigation needs of Egypt and Sudan, since water availability is especially critical, given Egypt’s growing population and increasing water needs. (NB:  NWNL is studying these trends that portend dire water scarcity in the near future.) The Aswan Dam now allows for two to three crop cycles annually.  Nearby aquifers are inundated by increased amounts of water due to year long, rather than seasonal irrigation.  Water levels are carefully monitored and extra water is saved for times of drought. There has been huge economic benefit to the fact that the dams has allowed Egypt to triple the output of its most important and profitable crops, wheat and cotton.5  

Lake-nasserLake Nasser in Egypt.

Thus, the Aswan High Dam created a new future of irrigation water, flood control and electricity – but came with disconcerting drawbacks. Its story and continued influence on the Nile River illustrate how human ingenuity can inadvertently take a toll on the environments and ecosystems we so rely on.  The degradation of Nile ecosystems and the influx of increasing chemical runoff are reminders of the negative impacts that infrastructure, intended to improve quality of life, can have on nearby environments and habitats for all species, including humans.

Consequences of the Aswan High Dam & Lake Nasser

While Lake Nasser reservoir has allowed for controlled downstream flows into northern Egypt, that backlog of Nile water forced the relocation about 100,000 people to other lands in Sudan and Egypt.6 Abu Simbel Temple and 22 historical structures fortunately were moved under UNESCO’s watchful eye, yet Buhen Fort, the Fadrus Cemetery and other archeological sites (whose relocation would have been too costly) were submerged.

Stagnant waters in Lake Nasser have threatened the health of people using or residing near the Nile River waters. Downstream, the dam promotes the presence of schistosomiasis, a parasitic disease also known as bilharzia or “snail fever.” Schistosomiasis kills more than 200,000 Africans annually; and 20 million sufferers develop disfiguring disabilities from complications, kidney and liver diseases, and bladder cancer.

Egyptian_harvest.jpgTomb Painting of Peasants Harvesting Papyrus

Seasonal flooding once brought thick layers of dark silt to farms, which farmers used a natural fertilizer. Unfortunately, the Aswan High Dam almost completely blocks the movement of nutrient-rich sediment downstream. (NB:  NWNL has seen similar impacts of Ethiopia’s new Gibe Dams, ending 6,000 years of flood-recession agriculture practiced by pastoralists in the Lower Omo River Basin.) As rich Upper Nile sediments collected behind the dam, Egyptian farmers resorted to toxic chemical fertilizers that drain into the Nile. These pollutants can cause liver disease and renal failure in humans.7 

Farming phosphates running into the river increase algae growth. Algae blooms, elicited by excess nutrients (eutrophication), produce cyanotoxins, which affect the health of fish and may poison humans.At the same time, fish populations no longer benefit from nutrients that used to be in upstream Nile sediments. Aquatic species in the Mediterranean Sea near the Nile Delta have suffered similarly from decreased natural nutrients and increased chemicals.9

Riverbanks also suffer from a lack of replenishing sediments as their erosion continues unchecked.  Prior to the dam’s construction, the average suspended silt load was 3,000 parts per million (ppm). Post-construction silt levels have declined to 50 ppm.10 Further downstream, the Nile Delta suffers from a lack of silt replenishment. [NB:  NWNL has documented parallel deltaic losses and damage in the U. S., as  levees along the Mississippi River withhold sediment that used to rebuild storm erosion in the Mississippi Delta.]

Silt-free water along with a lower current velocity and steady water levels have enabled invasive aquatic weeds to infest the Nile River and its irrigation canals. Large volumes of aquatic weeds, water hyacinths in particular, create stagnant water conditions, impair water flow, provide breeding grounds for malaria-carrying mosquitoes and prevent the passage of boats whose propellers become clogged with invasive weeds.  Prior to the dam’s construction, these weeds were unable to flourish due to the Nile’s varying water levels and the force of its flow.11

Eichhornia_crassipes_C.jpgWater Hyacinth  (Credit: Wouter Hagens)

Erosion in the Nile Delta is especially threatening because it has led to saltwater intrusion.   (NB: Again, this is another issue also occurring in the Mississippi River Delta.)  Increased groundwater salinity from the encroaching Mediterranean Sea is decreasing cotton and rice yields.12 Additionally, fertilizers have further heightened saline levels.13

Beyond Aswan:  Footnote by NWNL Director Alison Jones

In 2009, Egypt was the most populous, agricultural and industrial country in the Nile Basin.14 The Aswan Dam has been a major factor in this march by Egypt to progress and prosperity.  However, just as the Aswan Dam came with a price – so will the upstream Grand Renaissance Dam, now under construction in Ethiopia on the Blue Nile River.  It is likely the impacts of this new Ethiopian dam – the largest ever on the African continent – will be even more consequential to Egypt than those of the Aswan High Dam.  It seems a new chapter is about to be written regarding settlement of transboundary conflicts spawned from disputes over dam impacts and upstream-downstream water rights.


1“Nile River Facts.” Africa Facts. Web. 2017
2Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
3Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
4Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 600
5Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. 2012. p 389
6Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
7Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
8El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
9Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 389. 2012.
10Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 385. 2012.
11El-Shinnawy, Ibrahim A.; Abdel-Meguid, Mohamed; Nour Eldin, Mohamed M.; Bakry, Mohamed F. “Impact of Aswan High Dam on the Aquatic Weed Ecosystem.” Cairo University. September 2000. p 535-538.
12Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
13World Wildlife Foundation. “Nile Delta flooded savanna.” Web. 2017.
14El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
All photos used based on fair use of Creative Commons and Public Domain.

Oh, dam!

What Is A Dam? A dam is a structure, often quite large, built across a river to retain its flow of water in a reservoir for various purposes, most commonly hydropower.  In the U.S. there are over 90,000 dams over 6 feet tall, according to American Rivers.  In 2015 half of Earth’s major rivers contained around 57,000 large dams, according to International Rivers.  Dams are complicated. This blog presents a look at some of the benefits, consequences and impacts of dams, along with NWNL photographs of  North American and African dams in our case-study  watersheds.

BC: Waneta, Columbia River Basin, Waneta Dam on Pend d'Oreille RiverDanger sign at the Waneta Dam in the Columbia River Basin (2007)
Jones_111022_LA_2865Atchafalaya Old River Low Sill Control Structure, Louisiana (2011)

The slowing or diversion of river flows caused by dams – and related “control structures” – can have severe environmental impacts. Many species that reside in rivers rely on a steady flow for migration, spawning and healthy habitats. Altered river flows can disorient migrating fish and disrupt reproduction cycles needing natural seasonal flows.

US: Washington, Columbia River Basin, aerial views of Chief Joseph Dam
Jones_070622_WA_4119Aerial views of Chief Joseph Dam in the Columbia River Basin (2007)

The introduction of a dam into a river creates a reservoir by halting a river’s flow. This can severely impact the quality of water. Still water can cause water temperatures to increase. Resulting abnormal temperatures can negatively affect species; cause algae blooms; and decrease oxygen levels.

Jones_070628_OR_5171_MJuvenile fish bypass at the McNary Dam in the Columbia River Basin (2007)
Ethiopia: aerial of Omo River, construction site of Gibe Dam IIIAerial view of the construction site of Gibe III Dam in the Omo River (2007)

Bryan Jones, featured in Patagonia’s documentary “Dam Nation,” discussed today’s situation with four aging dams on the Lower Snake River (authorized in 1945) in his 2014 NWNL Interview:  “We used science then available to conquer and divide our river systems with dams. But today we can look at them and say, ‘Well-intentioned, but it didn’t really work out the way we would’ve liked it to.'”  Dams that may have been beneficial at one point in history must be constantly reassessed and taken down when necessary to restore river and riparian ecosystems and species. Some compare dams to humans, since they too have a limited life span of about 70-100 years.

Jones_100413_UG_9603Small dam across the White Nile River in Uganda (2010)
East AFrica: Uganda, JingaConstruction of the Bujagali Dam on the White Nile River in Uganda (2010)

There are well-intended reasons to build dams.  In the US, the Federal Emergency Management Agency (FEMA) has listed the values of dams on their website.  Those benefits  include recreation, flood control, water storage, electrical generation and debris control. These benefits are explained on the FEMA website.

USA: Alabama, Tennessee River Basin, Guntersville Dam (TVA)Danger sign at the Guntersville Dam, Tennessee River Basin (2013)
Jones_150817_CA_5888Parker Dam (a hydrodam) on the Colorado River, Southern California (2015)

Between 1998 and 2000, the World Commission on Dams (WCD) established the most comprehensive guidelines for dam building, reviewing 1,000 dams in 79 countries in two years. Their framework  for decision-making is based on recognizing rights of all interested parties and assessing risks.  Later, the European Union adopted this framework, stating that carbon credits from large dams can only be sold on the European market if the project complies with the WCD framework.

Many conflicts swirl around the impacts, longevity and usefulness of dams.  NWNL continues to study dam benefits versus their impacts, including removal of indigenous residents in order to establish reservoirs;  disruption of the downstream water rights and needs of people, species and ecosystems; and relative efficiencies of hydropower versus solar and wind.  Dam-building creates consequences.  Native Americans studied risks of their decisions for seven generations.  After the Fukushima tsunami caused the release of radioactive material, Japanese novelist Kazumi Saeki wrote:  “People have acquired a desire for technology that surpasses human comprehension.  Yet the bill that has come due for that desire is all too dear.”

Sources and resources for more information:

American Rivers, How Dams Damage Rivers

International Rivers, Environmental Impacts of Dams

International Rivers, Problems with Big Dams

International Rivers, The World Commission on Dams Framework – A Brief Introduction

FEMA, Benefits of Dams

National Hydropower Association, Why Hydro

NWNL, Interview with Bryan L. Jones

New York Times, Kazumi Saeki, In Japan, No Time Yet for Grief

All photos © Alison M. Jones.

“Living Shorelines” Can Fortify Our Coastlines … A Solution at Work in New Jersey’s Raritan Bay


A “living wall” of oysters in the South Atlantic. Photo: Alison M. Jones for No Water No Life

By Meredith Comi, Restoration Program Director of the NY/NJ Baykeeper 

After Hurricane Sandy, it was clear that coastal resiliency had become an immediate priority. Thus, Baykeeper began an innovative project to determine if a “Living Shoreline” of oysters could stabilize eroding shorelines of the urban New York-New Jersey Harbor Estuary. Perhaps they would simultaneously protect the surrounding environment, improve water quality, and create healthy aquatic habitats.

Oysters are powerful. They can filter and clean water, a much-needed service today. They can provide reef habitat for other sea creatures and improve resiliency to storm surge and erosion. Oysters once thrived in the NY-NJ Harbor Estuary — so much so that Ellis Island was previously called Little Oyster Island.  However, over-harvesting, pollution and the sedimentation of reefs resulted in a sharp population decline. Today there is no longer a sustainable oyster population in the NY-NJ Harbor area; but NY/NJ Baykeeper is working to restore them. As a bi-state restoration leader, NY/NJ Baykeeper has had restoration projects in both NJ and NY waters.


“Oyster-keepers” in the Raritan Bay. Photo: NJ/NY Baykeeper

In mid-August, 2016, NY/NJ Baykeeper and its partners installed a first-of-its-kind urban “Living Shoreline” in northern New Jersey waters.  Located in the Raritan Bay at the Naval Weapons Station Earle in Monmouth County, a new 0.91 acre Living Shoreline consists of an artificial reef, using live oysters. Known as “oyster castles,” these new concrete structures are meant to provide the needed hard surface on which oysters can attach and grow. These 137 castles with about 10,000 oyster larvae can thus begin to fortify and protect the Raritan Bayshore.


Oyster stabilization in the Mississippi River Delta.  Photo: Alison M. Jones for No Water No Life 

In 2010 the NJ Department of Environmental Protection banned all shellfish research, restoration and education activities in waters (1) deemed too contaminated or (2) “Restricted” or “Prohibited” for shellfish harvest.  Thus earlier oyster reef projects in nearby Navesink River and Keyport Harbor had to be moved. At that point, the U.S. Navy and NY/NJ Baykeeper became “Living Shoreline” partners. The U.S. Navy at Naval Weapons Station Earle, with its non-accessible stretch of shoreline, provides protected property, guidance and valuable support for Baykeeper’s oyster restoration activities.

Additional restoration activities at Naval Weapons Station Earle include setting oysters at NY/NJ Baykeeper’s aquaculture facility near the mouth of Ware Creek, and monitoring the oysters and structures in the ¼-acre experimental restoration plot to assess survival and growth.


Deposition of “oyster castles” into the Raritan Bay at NWS Earle.

NY/NJ Baykeeper has monitored this Living Shoreline twice since its August installation, finding that the oysters grew 22mm in just 2 months!  Other organisms like sponges and algae are attached to the castles as well, further contributing to the Living Shoreline habitat.  All the castles have stayed in place, even during the rough seas when Hurricane Hermine was off shore. This is a good sign of how the castles will hold up in the dynamic Raritan Bay.

This winter, oyster growth will become slower as the water becomes cooler. Since all the oysters are far enough under the water’s surface, they will be protected should the Bay freeze over. Come spring, this Living Shoreline will be expanded, adding more castles and oysters to the system.  Meanwhile, NY/NJ Baykeeper continues its study of biodiversity  and its collection of water quality data.

For further information, please contact Meredith Comi at meredith@nynjbaykeeper.org

Will the movie “DamNation” lead to the removal of the lower four Snake River Dams?

USA: WA, Columbia Snake River Basin, Garfield Co., Lower Granite Dam
USA: WA, Columbia Snake River Basin, Garfield Co., Lower Granite Dam

Since the release of the movie “DamNation” over a year ago, over 72 dams have been removed and over 730 miles of rivers were restored across the United States according to the non-profit conservation organization American Rivers. In January of this year, the producers of the movie met with members of Congress and White House officials regarding the removal of the lower four Snake River dams. Lower Granite is one.

NWNL documented the Snake River on an expedition last May interviewing stakeholders of the river including local farmers, an irrigation association, members of the Nez Perce Tribe, the manager of the Port of Lewiston, Idaho Power spokespersons and conservation organizations. Each group presented what the importance of the Snake River is to them. The only stakeholders we could not interview are the 13 species of salmon, the lamprey, the whales and other ocean-going creatures as well as the riparian vegetation that depend on an abundance of salmon to thrive. They are also voices of the river. Will some or all of the lower four dams be removed?  Check out the facts and myths page on the website of Save Our Wild Salmon. Further information about DamNation and its influence on dam removal is also available.

Blog post and photo by Barbara Briggs Folger.