Day Zero – A Water Warning

By Stephanie Sheng for No Water No Life (NWNL)
Edited by NWNL Director, Alison Jones

Stephanie Sheng is a passionate strategist for environmental and cultural conservation. Having worked in private and commercial sectors, she now uses her branding and communications expertise to drive behavior change that will help protect our natural resources. Inspired by conservation photographers, The Part We Play is her current project.  Her goal is to find how best to engage people and encourage them to take action. 

Misc-Pollution.jpg

I was horrified when I first heard the news from South Africa of Cape Town’s water crisis and impending ‘Day Zero’ – the day their taps would run dry. Originally forecasted for April 16, then pushed out to May, the apocalyptic-sounding day has now successfully been pushed out to next year. Had Day Zero remained slated for April or May, Cape Town would have been the first major city to run out of water. Although postponed, the threat still remains, and thus restrictions on water usage to 13.2 gallons (50 liters) per day for residents and visitors. Water rationing and a newly-heightened awareness around water use is now the new, legally-enforced normal in Cape Town.

Two things struck me as I read about this situation. First, the seemingly unthinkable felt very close. My visit to Cape Town a few years ago reminded me of San Francisco, my home before New York. Suddenly I was reading that this seemingly-similar city was on the brink of having no water coming out of their taps. As that hit me, I considered what modern, urban life would be like when water is scarce.

ClimateChange-ColumbiaBC.jpgCape Town’s restriction of 13.2 gal (50 L) per day is miniscule in comparison to the 39.6 gal (150 L) per day used by the average UK consumer[1] and the 79.3 to 99 gal (300 to 375 L) per day used by the average US consumer.[2] Unsurprisingly, Cape Town had to undergo drastic changes. It is now illegal to wash a car or fill a swimming pool. Hotel televisions blare messages to guests to take short 90-second showers. Washroom taps are shut off in restaurants and bars. Signs around bathroom stalls say, “If it’s yellow, let it mellow.” Hand sanitizer is now the normal method of hand cleaning.WASH-Tanzania.jpgShocked by the harsh realities of what water shortage could look like here at home, I was inspired to walk through my day comparing my water habits to the new realities being faced by those in the Cape Town facing a severe crisis. I wanted to discover opportunities where I could cut back, even though I consider myself on the more conscious end of the usage spectrum.

Here is a breakdown of my average water usage per day while living and working in NY, based on faucets spewing 2.6 gal (10 L) per minute[3], and a toilet flush using 2.3 gal (9L).[4]

  • Faucet use for brushing teeth and washing face for 4 min/day: 6 gal (40L)
  • Faucet use for dish washing and rinsing food for 7 min/day:5 gal (70L)
  • Toilet flushes, 4/day: 5 gal (36 L)
  • Drinking water: 4 gal (1.5 L)
  • Showering for 9 min/day — 8 gal (90 L)

My water usage totaled roughly 62.8 gal (237.5 L) per day. That is lower than the average American’s usage, but still more than four times the new water rations for Capetonians!

Misc-NYC.jpg

Living in an urban city that isn’t facing an impending water shortage, it may be more difficult to control certain uses than others (e.g. not flushing the toilet at work). However, there are some simple, yet significant ways to lower our daily water use:

  • Turn off the faucet while you brush your teeth and wash your face.
  • Use the dishwasher instead of washing dishes by hand. Only run it when full.
  • Only run the laundry with full loads.
  • When showering, shut off the water while you soap up and shave. Put a time in your shower to remind you not to linger.
  • Recycle water when possible. If you need to wait for hot water from the faucet, capture the cold water and use it for pets, plants, hand washing clothes, and such.

VWC-Beef.jpg

Water use discussed thus far includes obvious personal contributors to our water footprint. But the biggest contributor is actually our diet. Agriculture accounts for roughly 80% of the world’s freshwater consumption[5]. Different foods vary greatly in the amount of water consumed in their growth and production. Meat, especially from livestock with long life cycles, contains a high “virtural water” content per serving. For example, 792.5 gal (3,000 L) of water are required for a ⅓ lb. beef burger[6] – representing four times as much water as required for the same amount of chicken. That virtual water content ratio is even greater when red meat is compared to vegetables.

We don’t have to become vegetarians, but we can cut down on meat and choose meats other than beef and lamb. That change alone would save hundreds of thousands of gallons (or liters) consumed in a year, which is much greater than the 18,069.4 gal (68,400 L) I’d save by reducing my current water usage to that of a Capetonian. Consideration of virtual water content offers some food for thought!

Sources

[1] BBC News
[2] United States Geological Survey
[3] US Green Building Council: Water Reduction Use
[4] US Green Building Council: Water Reduction Use
[5] Food Matters Environment Reports
[6] National Geographic
All images/”hydrographics” are © Alison Jones, No Water No Life®.
For more “hydrographics” visit our
website.

The Great Giver: The Nile River

By Joannah Otis for No Water No Life (NWNL)

This is the 9th and final blog in the NWNL series on the Nile River in Egypt by NWNL Researcher Joannah Otis, a sophomore at Georgetown University. This essay addresses the human uses of the Nile River.  [NWNL expeditions have covered the Upper Nile, but due to current challenges for US photojournalists in Egypt and Sudan, NWNL is using literary and online resources to investigate the Lower Nile.]

The Nile River was vital to the lives and livelihoods of Ancient Egyptians and continues to play a significant role in modern Egyptian life. Egypt, as well as other countries in the Nile River Basin, rely entirely on this great river for fresh water. This reliance places great pressure on the river, especially Egypt’s extraction of the maximum amount of water it can according to international treaties.From aquaculture and fishing to drinking water and transport, Egypt uses the Nile for a wide variety of purposes. The Nile River also has considerable economic value since the Egyptian agriculture relies heavily on the Nile’s water. The human uses and values of the Nile River reflect its importance to the people who live along it.
Shaduf2

Illustration of a shaduf

A large portion of the water drawn from the Nile is for agriculture, a source of income for about 55% of the Egyptian population.2 In Ancient Egypt, farmers used a water-lifting device known as a “shaduf,” used to collect and disseminate water. This technology, developed around 1500 BCE, allowed farmers to irrigate their fields even during dry spells. It was so effective that the acreage of cultivable land expanded by 10-15%. Today, farmers use electric pumps and canals to transport water to their fields.3

Fish are a staple of the Egyptian diet and the fishing industry has thrived accordingly. However, unfortunately, overexploitation and high fishing pressures have stressed the natural fish populations. The river’s carrying capacity has been stretched to its limit and struggles to support the stocked fish. Such high stocking levels can result in poor water quality and an altered ecosystem.  To increase fish production, exotic species have been introduced to the Nile, but they have caused an imbalanced ecosystem and threatened native species. Illegal fishing continues to be a concern as well.4 

Compared to today, commercial fishing was of relative unimportance to the Ancient Egyptians. Although fish not consumed by the catcher were often sold for profit, trade of luxury goods and produce was a much more significant source of revenue. Nubia in particular was an important trading point as it provided ivory, slaves, incense, and gold, the riches that pharaohs and high society prized. Wadi al-Jarf was also a bustling trading town along the river. Since the Nile River flows to the north, boats could easily float downstream with their wares. At the same time, reliable southerly winds allowed vessels to sail upstream.5

Tile_from_the_palace_of_Ramesses_II;__Fish_in_a_Canal__MET_DT226146
Tile illustrating a fish in a canal c. 1279-1213 BCE Lower Egypt

For millions of years, the Nile River has continued steadily along its northward course. For thousands of years, it has given its people livelihoods and a precious source of water. Although excessive irrigation and overexploitation of fish threaten its flow, the Nile remains resilient. With proper care and environmental attention, the Nile can continue to thrive for years to come.

Sources

Turnbull, March. “Africa’s Mighty Dribble.” Africa Geographic. April 2005.
2 El-Nahrawy, Mohamed, A. “Country Pasture/Forage Resource Profile: Egypt.” Food and Agriculture Organization of the United Nations. 2011. Web.
Postel, Sandra. “Egypt’s Nile Valley Basin Irrigation.” WaterHistory.org. 1999. Web.
4 “The Environmental Resources of the Nile Basin.” p 57-98. Web.
The ancient Egyptian economy.” The Saylor Foundation. Web.
All photos used based on fair use of Creative Commons and Public Domain.

Lake Erie: A Solution to Vulnerability

By Judy Shaw, with Wil Hemker and John Blakeman for NWNL
(Edited by NWNL Director, Alison Jones)

Judy Shaw, professional planner and NWNL Advisor, and Wil Hemker, entrepreneurial chemist, are partnering with John Blakeman to promote prairie nutrient-retention strips as a proven way to protect Lake Erie’s water. They are encouraging schools and farmers in northwest Ohio to install demonstration strips and teach this effective means to stop harmful runoff from damaging our waterways. NWNL has documented this runoff problem in all its case-study watersheds and applauds this natural solution to chemical pollution of our waterways.

Untitled.jpgUpland prairie nutrient-retention strip. Photo by John Blakeman.

Imagine a very large body of fresh water supplying residents along 799 miles of shoreline with the very essence of their natural health. Lake Erie is such a vessel; carrying over 126 trillion gallons of precious water and serving millions of people in cities both in the USA and Canada. One such city is Toledo, Ohio. There, water from the Maumee River, which flows directly into the Western Basin of Lake Erie, provides fresh water to many in the region. Up to 80 million gallons of water is drawn from Lake Erie every day to supply Toledo and other municipalities with treated drinking water. 2

However, runoff from agricultural lands taints the water with phosphorous. In 2014 runoff caused extensive blooms of green algae, creating toxic microcystins – toxins produced by freshwater cyanobacteria, also called blue-green algae.3 This rendered the water on which the city relied as undrinkable. Today, four years later, continued flows of phosphorus-laden water still make this treasured natural resource vulnerable.

So what can be done? 

Many scientists have studied the problem. They’ve universally agreed that rainfall runoff from row-crop fields, suburban and urban land, and roadways is the root of the problem. As the City of Toledo rushes into a $500 million upgrade to its water treatment plant, the source remains completely uncontrolled.4

Jones_130520_IL_8783.jpgRunoff from row-crop fields after rain, Illinois.

Fortunately, solutions to manage rainfall runoff pollution are at hand. 

Through the work of many dedicated Midwest scientists, it has been determined that the presence of tallgrass prairies and seasonal, agricultural “cover crops”5 can arrest the phosphorous and nitrogen that historically has streamed directly into feeder streams and large watersheds like the Maumee River Basin.

On the matter of cover crops, it is important to note that wheat is planted in closely-spaced rows. Non-row crops include hay and alfalfa, planted en masse, not in rows. Alfalfa, because it is grown as a crop and is harvested, is not generally regarded as a cover crop. Cover crops are seldom, if ever, “cropped,” or harvested. Instead they are killed, or die, and left on the soil surface. Generally, cover crops are not true cash crops in the sense of harvesting and marketing.

Ohio prairie researcher John Blakeman found that edge-of-field strips of perennial tallgrass prairies can absorb algal nutrients in storm-water runoff, thus protecting the waterway while also enriching the prairie plants, or forbs. The tallgrasses and forbs (“wildflowers”) of native tallgrass prairies include big bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), switch grass (Panicum virgatum) and a dozen or more species. All of these once grew naturally in northwest Ohio and exist today in a few “remnant prairie” ecosystems. Thus tallgrass prairies can be commercially planted with success in Ohio.

From John’s research with colleagues and published supportive findings from Iowa State University, he developed methods of planting a robust mix of native Ohio prairie species. He has planted them in several sites, including the NASA Glenn Research Center’s large Plum Brook Station near Sandusky, Ohio. Iowa State University has proved the ability of the prairie plants to absorb the renegade nutrients. The critical step is to persuade those engaged in Ohio agriculture to plant 30–60’ strips of tallgrass prairie species along the downslope edges of row-crop fields, where runoff water percolates before draining downstream to Lake Erie.

Jones_130520_IA_8937.jpgTallgrass Prairie, University of Southern Iowa.

Criticality? High. 

With these strips, Iowa research shows that up to 84% of the nitrogen runoff and 90% of the phosphorous can be captured by the plants, and the water running into the river is virtually clean. The levels of nitrogen and phosphorus exiting the field can no longer foster blooms of toxic green algae, such as those that crippled Toledo’s water supply in 2014.

Vulnerability beyond Lake Erie?

Non-point source pollution (i.e. sediment and nutrient runoff from ever-more-intense rainfall events onto rural row-crop fields, suburban fertilized lawns, and massive expanses of roadway and urban pavement) lies at the root of Lake Erie’s problem. This problem however extends beyond harmful algal blooms in streams, lakes, and Toledo’s drinking water source. It is the cause of huge hypoxic zones in the Great Lakes, the Gulf of Mexico (from the Mississippi River drainage), and North American eastern coastal waters.

Some good news?

Several Ohio farmland stakeholders are listening and learning about prairie grass strips at field edges. They are considering how to research and demonstrate upland prairie nutrient-retention strips so more farmers, in time, might use this algal nutrient-suppression practice. Expansive adoption of these strips will reduce phosphorous and nitrogen runoff from agricultural lands, helping obviate harmful algal blooms in Lake Erie.

Jones_130520_IA_8938.jpgTallgrass Prairie, University of Southern Iowa.

All communities need to reduce non-point source pollution. There are many ecological practices communities can practice, including:

  • decreasing suburban and urban pavement
  • increasing tallgrass and forb plantings
  • designing prairie and wetland drainage swales
  • conserving water use

If we all understand the sources of pollution and commit to take action, it will only be a matter of time before other watersheds in Ohio and across the country increase their water quality by using upland prairie nutrient-retention strips and thus also expand green spaces.

How can you be part of the solution?

First, become informed. Many US federal, state and community governments are measuring and attempting to act on non-point source pollution. Learn more about your state and community programs.

Second, take action by changing your and your family’s personal water use. Change your home and neighborhood water and rainwater practices. Here are some suggestions from The Nature Conservancy.

Jones_130520_IA_8935.jpgTallgrass Prairie, University of Southern Iowa.

Lastly, connect back with No Water No Life. Let us know how you and your neighbors outreach to community, state, and federal government leaders is changing infrastructure and community water resource practices.

The strongest governments on earth cannot clean up pollution by themselves. They must rely on each ordinary person, like you and me, on our choices, and on our will.  –2015 Chai Jing, Chinese investigative reporter, and documentary film maker.

 

Footnotes:

1The capacity, over 127 trillion gallons, is extrapolated from USEPA Lake Erie Water Quality report, which notes the water volume as 484 cm3.
2 Toledo Division of Water Treatment.
3 The Florida DEP states, “Microcystins are nerve toxins that may lead to nausea, vomiting, headaches, seizures and long-term liver disease if ingested in drinking water.”
4 US News.
5 Cover crops are quick-growing, short-lived, low-height plants planted to give full coverage of bare soil, in the dormant seasons, (fall, winter, early spring). They are short-lived; serve only to cover the soil to reduce erosion; and retard growth of weeds before row-crops are planted.

 

All photos © Alison M. Jones unless otherwise stated.

Brain-eating amoeba in Louisiana’s water

Parish of St. John the Baptist, Louisiana
Parish of St. John the Baptist

Naegleria fowleri  (also known as the “brain-eating amoeba”) is a free-living, thermophilic excavate form of protist typically found in warm bodies of fresh water, such as ponds, lakes, rivers, and hot springs. It is also found in soil, near warm-water discharges of industrial plants, and in poorly chlorinated, or unchlorinated swimming pools….

N. fowleri can invade and attack the human nervous system and brain, causing primary amoebic meningoencephalitis (PAM). Although this occurs rarely, such an infection nearly always results in the death of the victim.  The case fatality rate is greater than 95%. [Source: http://en.wikipedia.org/wiki/Naegleria_fowleri]

This parish is like so many other towns we all live in…  Except that in southern Louisiana in September the weather is wicked hot and humid – and there is lots of industry responsible for creating fence-line communities.

New Orleans, Lower Mississippi River Basin, "Petro-Chemical Alley"
New Orleans, Lower Mississippi River Basin, “Petro-Chemical Alley”

(“Fence-line” refers to communities with refineries, gas compression stations and other kinds of industrial operations. These plants put up high wire mesh fences to keep people out of their premises, but those fences don’t stop toxins from entering the air and water of those communities. The term is used by agencies trying to address the resulting health issues occurring due to such toxins.)

New Orleans, Lower Mississippi River Basin, "Petro-Chemical Alley"
New Orleans, Lower Mississippi River Basin, “Petro-Chemical Alley”

The parish government has implemented “chlorine burns” to disinfect the Lions system, which serves over 12,000 people. The School Board has declared an emergency, taking school water fountains offline and putting water coolers in place. The deadly amoeba infiltrates via water vapor in the nose, and spreads to the brain causing severe damage. Residents are getting home water tests and taking precautions when swimming or bathing. Town meetings have drawn large crowds to discuss what can be done in their communities.

Parish of St John the Baptist school sign "Better Schools, Better Futures"
St John the Baptist Parish school sign “Better Schools. Better Futures.”

Related news : http://abcnews.go.com/Health/brain-eating-amoeba-found-louisiana-water-supply/story?id=25160247

http://www.nola.com/politics/index.ssf/2014/09/brain-eating_amoeba_in_st_john_1.html

– Posted by Jasmine Graf, NWNL Associate Director

Grass is #1 US crop and is very water-dependent

Using satellite imagery, NASA’s Christina Milesi has been studying the impact of lawns on America’s fresh water resources. Research indicates there’s at least 3 times more surface area of lawns in the U.S. than irrigated corn, making it the largest irrigated crop.

How do lawns hurt the environment?

 fertilizers run off into drains, contaminating drinking water

 fertilizers pollute rivers and streams and damage ecosystems

 watering lawns depletes our freshwater reserves

chemical herbicides / pesticides are health risks to humans and wildlife

lawns infringe on viable habitat for pollinators like bees

 an hour of gas-powered lawn mowing produces as much pollution as four hours of driving a car

Consider Xeriscaping!

Screen Shot 2014-07-14 at 4.36.09 PM

USA California, Santa Barbara, Firescape Garden by firestation on Stanwood

View more xeriscape gardens here.

 

For further reading:

Lawn Pesticide Fact Sheet

Assessing the Extent of Urban Irrigated Areas in the United States.

We’re all connected downstream

USA:  New Jersey, Mountainville, Guinea Hollow Stream, early spring
USA: New Jersey, Mountainville, Guinea Hollow Stream, early spring

WHAT YOU CAN DO to protect our water resources:
Support the EPA and US Army Corps of Engineers –

It’s critical we all have clean fresh water! The EPA and USACE are proposing a clarification of their rules that protect our water quality by addressing upstream impacts on downstream communities. Ending loopholes in the 1970’s Clean Water Act will stop the free dumping of toxins into small streams and wetlands. This will affect some farmers’ use of pesticides and herbicides; but it will encourage restoration of riverine corridors and wetlands that filter such toxins. In the long-run, a tighter Clean Water Act will benefit us all.

NWNL asks everyone to jump in here!!

— Read the proposal.
— Listen to EPA Administrator Gina McCarthy on this ruling.
Contact the EPA during its 90-day Comment Period.