Posts Tagged ‘environmentalism’

Lake Erie: A Solution to Vulnerability

February 20, 2018

By Judy Shaw, with Wil Hemker and John Blakeman for NWNL
(Edited by NWNL Director, Alison Jones)

Judy Shaw, professional planner and NWNL Advisor, and Wil Hemker, entrepreneurial chemist, are partnering with John Blakeman to promote prairie nutrient-retention strips as a proven way to protect Lake Erie’s water. They are encouraging schools and farmers in northwest Ohio to install demonstration strips and teach this effective means to stop harmful runoff from damaging our waterways. NWNL has documented this runoff problem in all its case-study watersheds and applauds this natural solution to chemical pollution of our waterways.

Untitled.jpgUpland prairie nutrient-retention strip. Photo by John Blakeman.

Imagine a very large body of fresh water supplying residents along 799 miles of shoreline with the very essence of their natural health. Lake Erie is such a vessel; carrying over 126 trillion gallons of precious water and serving millions of people in cities both in the USA and Canada. One such city is Toledo, Ohio. There, water from the Maumee River, which flows directly into the Western Basin of Lake Erie, provides fresh water to many in the region. Up to 80 million gallons of water is drawn from Lake Erie every day to supply Toledo and other municipalities with treated drinking water. 2

However, runoff from agricultural lands taints the water with phosphorous. In 2014 runoff caused extensive blooms of green algae, creating toxic microcystins – toxins produced by freshwater cyanobacteria, also called blue-green algae.3 This rendered the water on which the city relied as undrinkable. Today, four years later, continued flows of phosphorus-laden water still make this treasured natural resource vulnerable.

So what can be done? 

Many scientists have studied the problem. They’ve universally agreed that rainfall runoff from row-crop fields, suburban and urban land, and roadways is the root of the problem. As the City of Toledo rushes into a $500 million upgrade to its water treatment plant, the source remains completely uncontrolled.4

Jones_130520_IL_8783.jpgRunoff from row-crop fields after rain, Illinois.

Fortunately, solutions to manage rainfall runoff pollution are at hand. 

Through the work of many dedicated Midwest scientists, it has been determined that the presence of tallgrass prairies and seasonal, agricultural “cover crops”5 can arrest the phosphorous and nitrogen that historically has streamed directly into feeder streams and large watersheds like the Maumee River Basin.

On the matter of cover crops, it is important to note that wheat is planted in closely-spaced rows. Non-row crops include hay and alfalfa, planted en masse, not in rows. Alfalfa, because it is grown as a crop and is harvested, is not generally regarded as a cover crop. Cover crops are seldom, if ever, “cropped,” or harvested. Instead they are killed, or die, and left on the soil surface. Generally, cover crops are not true cash crops in the sense of harvesting and marketing.

Ohio prairie researcher John Blakeman found that edge-of-field strips of perennial tallgrass prairies can absorb algal nutrients in storm-water runoff, thus protecting the waterway while also enriching the prairie plants, or forbs. The tallgrasses and forbs (“wildflowers”) of native tallgrass prairies include big bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), switch grass (Panicum virgatum) and a dozen or more species. All of these once grew naturally in northwest Ohio and exist today in a few “remnant prairie” ecosystems. Thus tallgrass prairies can be commercially planted with success in Ohio.

From John’s research with colleagues and published supportive findings from Iowa State University, he developed methods of planting a robust mix of native Ohio prairie species. He has planted them in several sites, including the NASA Glenn Research Center’s large Plum Brook Station near Sandusky, Ohio. Iowa State University has proved the ability of the prairie plants to absorb the renegade nutrients. The critical step is to persuade those engaged in Ohio agriculture to plant 30–60’ strips of tallgrass prairie species along the downslope edges of row-crop fields, where runoff water percolates before draining downstream to Lake Erie.

Jones_130520_IA_8937.jpgTallgrass Prairie, University of Southern Iowa.

Criticality? High. 

With these strips, Iowa research shows that up to 84% of the nitrogen runoff and 90% of the phosphorous can be captured by the plants, and the water running into the river is virtually clean. The levels of nitrogen and phosphorus exiting the field can no longer foster blooms of toxic green algae, such as those that crippled Toledo’s water supply in 2014.

Vulnerability beyond Lake Erie?

Non-point source pollution (i.e. sediment and nutrient runoff from ever-more-intense rainfall events onto rural row-crop fields, suburban fertilized lawns, and massive expanses of roadway and urban pavement) lies at the root of Lake Erie’s problem. This problem however extends beyond harmful algal blooms in streams, lakes, and Toledo’s drinking water source. It is the cause of huge hypoxic zones in the Great Lakes, the Gulf of Mexico (from the Mississippi River drainage), and North American eastern coastal waters.

Some good news?

Several Ohio farmland stakeholders are listening and learning about prairie grass strips at field edges. They are considering how to research and demonstrate upland prairie nutrient-retention strips so more farmers, in time, might use this algal nutrient-suppression practice. Expansive adoption of these strips will reduce phosphorous and nitrogen runoff from agricultural lands, helping obviate harmful algal blooms in Lake Erie.

Jones_130520_IA_8938.jpgTallgrass Prairie, University of Southern Iowa.

All communities need to reduce non-point source pollution. There are many ecological practices communities can practice, including:

  • decreasing suburban and urban pavement
  • increasing tallgrass and forb plantings
  • designing prairie and wetland drainage swales
  • conserving water use

If we all understand the sources of pollution and commit to take action, it will only be a matter of time before other watersheds in Ohio and across the country increase their water quality by using upland prairie nutrient-retention strips and thus also expand green spaces.

How can you be part of the solution?

First, become informed. Many US federal, state and community governments are measuring and attempting to act on non-point source pollution. Learn more about your state and community programs.

Second, take action by changing your and your family’s personal water use. Change your home and neighborhood water and rainwater practices. Here are some suggestions from The Nature Conservancy.

Jones_130520_IA_8935.jpgTallgrass Prairie, University of Southern Iowa.

Lastly, connect back with No Water No Life. Let us know how you and your neighbors outreach to community, state, and federal government leaders is changing infrastructure and community water resource practices.

The strongest governments on earth cannot clean up pollution by themselves. They must rely on each ordinary person, like you and me, on our choices, and on our will.  –2015 Chai Jing, Chinese investigative reporter, and documentary film maker.

 

Footnotes:

1The capacity, over 127 trillion gallons, is extrapolated from USEPA Lake Erie Water Quality report, which notes the water volume as 484 cm3.
2 Toledo Division of Water Treatment.
3 The Florida DEP states, “Microcystins are nerve toxins that may lead to nausea, vomiting, headaches, seizures and long-term liver disease if ingested in drinking water.”
4 US News.
5 Cover crops are quick-growing, short-lived, low-height plants planted to give full coverage of bare soil, in the dormant seasons, (fall, winter, early spring). They are short-lived; serve only to cover the soil to reduce erosion; and retard growth of weeds before row-crops are planted.

 

All photos © Alison M. Jones unless otherwise stated.

World Conservation Day 2017

December 5, 2017

In honor of World Conservation Day, NWNL wants to share some of it’s favorite photographs from over the years of each of our case-study watersheds.

Trout Lake in the Columbia River Basin
Jones_070630_WA_5507

 

Aerial view of the largest tributary of the Lower Omo River
Ethiopia: aerial of Mago River, largest tributary of Lower Omo River

 

Canoeing on the Mississippi River
Jones_140920_LA_3950-2

 

Fisherman with his canoe on the shore of Lake Tana, source of the Nile River
Ethiopia: Lake Tana, source of the blue Nile, fisherman and canoe on the shore.

 

Wildebeests migrating toward water in the Mara Conservancy
K-WIB-410.tif

 

Raritan River at sunset
Jones_090515_NJ_4585

 

All photos © Alison M. Jones.

Aswan High Dam Leaves an Environmental Legacy

November 7, 2017

by Joannah Otis for No Water No Life

This is the second our blog series on “The Nile River in Egypt” by NWNL Researcher Joannah Otis, sophomore at Georgetown University. Following her blog “Finding Hapi-ness on the Nile,” this essay addresses perhaps the greatest elements of change created thus far by humans along the Nile. [NWNL has completed documentary expeditions to the White and Blue Nile Rivers, but due to current challenges for photojournalists visiting Egypt and Sudan, NWNL is using literary and online resources to investigate the availability, quality and usage of the Nile in those regions.]

Aswan_DamAswan Dam on the Nile River in Aswan, Egypt

Background on Aswan High Dam

The Nile River snakes south to north for 4,160 miles through ten North African countries until it reaches the Mediterranean Ocean.1 Its path is interrupted only by the great Aswan High Dam, which has brought both good and bad to the Egyptian people. Towering 364 feet tall and stretching 12,565 feet along its crest, the Aswan High Dam is impressive.2 This dam was opened in 1971 after a decade of construction and seeking funds from the Soviet Union.3 Its transboundary reservoir, Lake Nasser, which backs up into Sudan for 300 miles, holds nearly two years’ worth of water from the Nile River.

Benefits of the Aswan High Dam & Lake Nasser

The High Dam, replacing a 1902 Low Dam, annually generates more than 10 billion kilowatt hours of electricity, facilitating Egypt’s path to industrialization. This new dam also marked a major shift in Egypt’s agricultural prospects. Previously, Nile River Basin farmers were forced to depend on fickle seasonal flooding, which could bring appropriate levels of water one year and often completely washed away soil the next. Such unpredictability made it hard to grow a reliable crop; and the Nile’s single flooding season precluded farmers from having more than one harvest per year.

Lake Nasser’s surplus of water has well served the irrigation needs of Egypt and Sudan, since water availability is especially critical, given Egypt’s growing population and increasing water needs. (NB:  NWNL is studying these trends that portend dire water scarcity in the near future.) The Aswan Dam now allows for two to three crop cycles annually.  Nearby aquifers are inundated by increased amounts of water due to year long, rather than seasonal irrigation.  Water levels are carefully monitored and extra water is saved for times of drought. There has been huge economic benefit to the fact that the dams has allowed Egypt to triple the output of its most important and profitable crops, wheat and cotton.5  

Lake-nasserLake Nasser in Egypt.

Thus, the Aswan High Dam created a new future of irrigation water, flood control and electricity – but came with disconcerting drawbacks. Its story and continued influence on the Nile River illustrate how human ingenuity can inadvertently take a toll on the environments and ecosystems we so rely on.  The degradation of Nile ecosystems and the influx of increasing chemical runoff are reminders of the negative impacts that infrastructure, intended to improve quality of life, can have on nearby environments and habitats for all species, including humans.

Consequences of the Aswan High Dam & Lake Nasser

While Lake Nasser reservoir has allowed for controlled downstream flows into northern Egypt, that backlog of Nile water forced the relocation about 100,000 people to other lands in Sudan and Egypt.6 Abu Simbel Temple and 22 historical structures fortunately were moved under UNESCO’s watchful eye, yet Buhen Fort, the Fadrus Cemetery and other archeological sites (whose relocation would have been too costly) were submerged.

Stagnant waters in Lake Nasser have threatened the health of people using or residing near the Nile River waters. Downstream, the dam promotes the presence of schistosomiasis, a parasitic disease also known as bilharzia or “snail fever.” Schistosomiasis kills more than 200,000 Africans annually; and 20 million sufferers develop disfiguring disabilities from complications, kidney and liver diseases, and bladder cancer.

Egyptian_harvest.jpgTomb Painting of Peasants Harvesting Papyrus

Seasonal flooding once brought thick layers of dark silt to farms, which farmers used a natural fertilizer. Unfortunately, the Aswan High Dam almost completely blocks the movement of nutrient-rich sediment downstream. (NB:  NWNL has seen similar impacts of Ethiopia’s new Gibe Dams, ending 6,000 years of flood-recession agriculture practiced by pastoralists in the Lower Omo River Basin.) As rich Upper Nile sediments collected behind the dam, Egyptian farmers resorted to toxic chemical fertilizers that drain into the Nile. These pollutants can cause liver disease and renal failure in humans.7 

Farming phosphates running into the river increase algae growth. Algae blooms, elicited by excess nutrients (eutrophication), produce cyanotoxins, which affect the health of fish and may poison humans.At the same time, fish populations no longer benefit from nutrients that used to be in upstream Nile sediments. Aquatic species in the Mediterranean Sea near the Nile Delta have suffered similarly from decreased natural nutrients and increased chemicals.9

Riverbanks also suffer from a lack of replenishing sediments as their erosion continues unchecked.  Prior to the dam’s construction, the average suspended silt load was 3,000 parts per million (ppm). Post-construction silt levels have declined to 50 ppm.10 Further downstream, the Nile Delta suffers from a lack of silt replenishment. [NB:  NWNL has documented parallel deltaic losses and damage in the U. S., as  levees along the Mississippi River withhold sediment that used to rebuild storm erosion in the Mississippi Delta.]

Silt-free water along with a lower current velocity and steady water levels have enabled invasive aquatic weeds to infest the Nile River and its irrigation canals. Large volumes of aquatic weeds, water hyacinths in particular, create stagnant water conditions, impair water flow, provide breeding grounds for malaria-carrying mosquitoes and prevent the passage of boats whose propellers become clogged with invasive weeds.  Prior to the dam’s construction, these weeds were unable to flourish due to the Nile’s varying water levels and the force of its flow.11

Eichhornia_crassipes_C.jpgWater Hyacinth  (Credit: Wouter Hagens)

Erosion in the Nile Delta is especially threatening because it has led to saltwater intrusion.   (NB: Again, this is another issue also occurring in the Mississippi River Delta.)  Increased groundwater salinity from the encroaching Mediterranean Sea is decreasing cotton and rice yields.12 Additionally, fertilizers have further heightened saline levels.13

Beyond Aswan:  Footnote by NWNL Director Alison Jones

In 2009, Egypt was the most populous, agricultural and industrial country in the Nile Basin.14 The Aswan Dam has been a major factor in this march by Egypt to progress and prosperity.  However, just as the Aswan Dam came with a price – so will the upstream Grand Renaissance Dam, now under construction in Ethiopia on the Blue Nile River.  It is likely the impacts of this new Ethiopian dam – the largest ever on the African continent – will be even more consequential to Egypt than those of the Aswan High Dam.  It seems a new chapter is about to be written regarding settlement of transboundary conflicts spawned from disputes over dam impacts and upstream-downstream water rights.

Sources

1“Nile River Facts.” Africa Facts. Web. 2017
2Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
3Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
4Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 600
5Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. 2012. p 389
6Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
7Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
8El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
9Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 389. 2012.
10Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 385. 2012.
11El-Shinnawy, Ibrahim A.; Abdel-Meguid, Mohamed; Nour Eldin, Mohamed M.; Bakry, Mohamed F. “Impact of Aswan High Dam on the Aquatic Weed Ecosystem.” Cairo University. September 2000. p 535-538.
12Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
13World Wildlife Foundation. “Nile Delta flooded savanna.” Web. 2017.
14El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
All photos used based on fair use of Creative Commons and Public Domain.
%d bloggers like this: