Hatcheries: Helpful or Harmful?

By Bianca T. Esposito, NWNL Research Intern
(Edited by Alison Jones, NWNL Director)

NWNL research intern Bianca T. Esposito is a senior at Syracuse University studying Biology and minoring in Economics. Her research focuses primarily on how watershed degradation affects biodiversity.

Salmon Fish Ladder.jpgFigure 1. Salmon utilizing a manmade fish ladder to bypass a dam in their quest for migration. (Creative Commons)

“Elders still tell stories about the tears tribal fishermen shed as they watched salmon throwing themselves against the newly constructed Grand Coulee Dam.”
-John Sorois, Coordinator of Upper Columbia United Tribes

What are the impacts of hatchery and why do we need them? Hatcheries were created in the late 1800’s to reduce the decline of fish populations caused by hydroelectric dam development. Hatcheries (Figure 2) are part of a fish farming system that produces artificial populations of anadromous fish for future release into the wild. Upon release, these fish enter a freshwater location, specifically a tributary, with no dam to bypass on their way to and from the ocean. Anadromous fish, such as salmon, white sturgeon and lamprey spend most of their life at sea, but return to their native tributaries in freshwater to spawn. Once anadromous fish spawn, they die off and the life cycle is continued to be carried out by the next generation of juveniles. Since returning to their native breeding grounds is a necessity for anadromous fish, hatchery-raised fish released into tributaries without dams is one way to combat this impediment of migration that dams have created.

In this blog, we will look at hatcheries as they relate to the declining salmon populations in the Columbia River Basin.

Besides hatcheries, another way for salmon to bypass the dams constructed along the Columbia River Basin is with the use of fish ladders or fish passages built on the dams (Figures 1 and 3). However, these methods can be harmful to the salmon. Fish ladders require that salmon climb up many platforms to access the reservoir on the other side of the dam. There is evidence that supports claims of an increased rate of exhaustion in salmon utilizing the ladder. Ultimately this leads to avoidance of the ladder and decreased migration rates of salmon.

Jones_070623_WA_1904.jpgFish ladder at Rocky Reach Dam on the Columbia River

Hatcheries are an attempt to overcome this low success rate of released salmon returning to tributaries. Stock transfers are one hatchery approach whereby salmon eggs are incubated and hatched in one part of the basin and then shipped to streams all over for release. This method of stock transfer is used to re-populate areas in which salmon populations are declining, or in places they no longer inhabit. However, because of the changes in location, these farmed salmon have trouble returning to the reassigned tributary, since  instinctively they would return to their birth stream.

Another major problem hatcheries face is that once artificially-grown salmon are released, they still have to face the same problems that confront wild salmon. These challenges include water pollution, degraded habitats, high water temperatures, predators and overfishing. However, the salmon who mature on the farm have no prior experience on how to handle these threats, which is one reason they face very low survival rates. Overall, these artificial salmon are not considered as “fit” for survival, nor do they have the ability to adapt to the environment in which they are released because they grew up on a farm.

USFWS Fish Transfer to Little White Salmon NFH (19239836984).jpgFigure 2. The raceways where salmon are kept at Little White Salmon National Fish Hatchery in Washington State. (Creative Commons)

In the 1980’s fisheries moved towards a more “ecosystem-management” approach. They began conserving wild, naturally spawning stocks, as well as hatchery-bred fish. Yet, the overbearing problem with this method was that if hatchery-bred fish were to mate with wild fish, it could cause genetic and ecological damage.

A shift has been made towards utilizing “supplementation facilities”, a more natural, albeit artificial environment for raising the fish that includes shade, rocks, sand, and various debris typical of their natural habitat. This natural approach allows the salmon somewhat “ready” for the wild. The idea behind this technique is that after the salmon are released into streams and spend time in the ocean, they know to return to that tributary to spawn, instead of the hatchery. While this method has increased the number of adult salmon returning to spawn, it still bears the negative possibility of genetically compromising the remaining gene pool of the wild fish.

Besides the genetic problems faced with breeding artificial salmon alongside with wild salmon, breeding solely within hatcheries can also ultimately lead to inbreeding depression. This results in the salmon having a reduced biological fitness that limits their survival due to breeding related individuals. Additionally, artificial selection and genetic modification by fish farms can also cause reduced fitness in reproductive success, swimming endurance and predator avoidance. Another reason farmed salmon are not as “fit” as wild salmon is due to the treatment they receive in the hatchery. The food salmon are fed is not healthy for them – its main purpose is to make them grow faster. This forced rapid growth can lead to numerous health problems.

Diseases experienced in fish farms are also experienced in the wild. They occur naturally and are caused by pathogens such as bacteria, viruses and parasites. What exacerbates disease in a fish farm is overcrowding, which makes it fairly easy for the disease to spread throughout the hatchery. Specifically with viral infections, those who may not show symptoms of disease can be carriers of the virus and transmit further, whether in the farm or after their release into the wild. Consequently, once they are transported and deposited across river basins to be released, these diseases then go on to affect wild salmon with no immunity to the disease they have acquired. This decline in wild salmon has also caused declining effects in their predator populations, such as bears, orcas and eagles.

John Day Dam Fish Ladder.jpg Figure 3. The fish ladder at John Day Dam in Washington State. (Creative Commons)

Along with all the negatives that come with farm fish, the high production from hatcheries eliminates the need to regulate commercial and recreational harvest. So, because of the production from hatcheries, overfishing continues. Hatcheries have become a main source of economic wealth because they provide for the commercial harvests, as well as local harvests. A permanent and sustainable solution to combat the decline of wild salmon populations remains to be found. This problem continues to revolve around the construction and use of hydroelectric dams which provide the main source for electricity in the region; greatly reduce flood risks; and store water for drinking and irrigation.

The concept that hatcheries are compensating for the loss of fish populations caused by human activity is said by some to be like a way to “cover tracks” for past wrongdoings because it does nothing to help the naturally wild salmon at all. Hatcheries are only a temporary solution to combat the decline of the salmon population.

Jones_070615_BC_3097.jpgFish and river steward on the Salmo River

What we really need is an increase of spawning in wild salmon and to ensure that they have a way to survive the dams as they make their way to sea. Reforestation and protection of small spawning streams is one part of the solution. A more permanent, albeit partial, solution would be to find a way to advance the electricity industry reducing the need for hydropower. Until we find a way to make this happen, hatcheries seem to be a helpful way to continue to support the salmon-based livelihoods, as well as human food needs and preferences. Unfortunately, hatcheries do nothing to help the current situation of wild anadromous salmon in the Columbia River Basin.

In April of this year, the Lake Roosevelt Forum in Spokane WA outlined a 3-phase investigation into reintroducing salmon and steelhead to the Upper Columbia River Basin in both the US and Canada. In March 2016, Phase 1 began, dealing with the planning and feasibility of possible reintroduction. The study, expected to be released in 2018, concerns habitat and possible donor stock for reestablishing runs. All work on the studies are mostly complete and are predicted to be suitable for hundreds to thousands, or even millions of salmon. Forty subpopulations of salmon species have been identified and ranked for feasibility, including the Sockeye, Summer/Fall Chinook, Spring Chinook, Coho and Steelhead. The Confederated Tribe of the Colville Reservation stated they are waiting for one last permit from the National Oceanic and Atmospheric Administration (NOAA). Then they can begin the second phase of the decades-long research process using pilot fish release this fall.

Jones_110912_WA_2832-2.jpgChinook hatchery salmon underwater

Phase Two will be the first time salmon have returned to the upper Columbia River Basin in almost 80 years. This blockage came from the completion of the Grand Coulee Dam in the late 1930’s and Chief Joseph Dam in 1955. The Confederation Tribes of the Colville Reservation fish managers plan to truck these salmon around the dam, since constructing a fish ladder would be too costly. Funding currently comes from tribes and federal agencies. Possible additional funding may come from the Environment and Climate Change Canada and the renegotiation of Columbia River Transboundary Treaty.

Renegotiations of the 1964 Columbia River Transboundary Treaty between the United States and Canada is currently underway. The first meeting took place in Washington D.C. on May 29 and 30, 2018. Just weeks ago the U.S. emphasized their stance on continuing careful management of flood risks and providing a reliable and economical power source while recognizing ecosystem concerns. The next meeting will take place in British Columbia on August 15 and 16, 2018. However,  tribes are not pleased with their exclusion from negotiating teams. Tribes excluded consist of the Columbia Basin’s Native American tribes, primarily in Washington, Oregon and Idaho, and First Nation tribes in British Columbia, Canada.

Jones_070614_BC_0372.jpgMural of human usage of salmon in British Columbia

NWNL Director’s Addendum re: a just-released study: Aquaculture production of farmed fish is bigger than yields of wild-caught seafood and is growing by about 6% per year, yielding 75 million tons of seafood.  While it is a very resource-efficient way to produce protein and improve global nutrition and food security, concerns are growing about the sustainability of feeding wild “forage fish,” (eg: anchovies, herring and sardines) to farmed fish so they will grow better and faster. These small fish are needed prey for seabirds, marine mammals and larger fish like salmon. A June 14 study suggests soy might be a more sustainable alternative to grinding fishmeal for farmed seafood and livestock.

Bibliography:

Close, David. U.S. Department of Energy, accessed June 5, 18 by BE, website
Northwest Power and Conservation Council, accessed June 12, 18 by BE, website
Animal Ethics, accessed June 12, 18 by BE, website
Aquaculture, accessed June 12, 18 by BE, website
Luyer, Jeremy. PNAS, accessed on June 12, 18 by BE, website
Simon, David. MindBodyGreen, accessed on June 14 by BE, website
Kramer, Becky. The Spokesman-Review, accessed on June 14, 18 by BE, website
Harrison, John. Northwest Power and Conservation Council, accessed on June 14, 18 by BE, website
Schwing, Emily. Northwest News Network, accessed on June 14, 18 by BE, website
Office of the Spokesperson. U.S. Department of State, accessed on June 14, 18 by BE, website
 The Columbia Basin Weekly Fish and Wildlife News Bulletin, accessed on June 14, 18 by BE, website

Unless otherwise noted, all photos © Alison M. Jones.

Aswan High Dam Leaves an Environmental Legacy

by Joannah Otis for No Water No Life

This is the second our blog series on “The Nile River in Egypt” by NWNL Researcher Joannah Otis, sophomore at Georgetown University. Following her blog “Finding Hapi-ness on the Nile,” this essay addresses perhaps the greatest elements of change created thus far by humans along the Nile. [NWNL has completed documentary expeditions to the White and Blue Nile Rivers, but due to current challenges for photojournalists visiting Egypt and Sudan, NWNL is using literary and online resources to investigate the availability, quality and usage of the Nile in those regions.]

Aswan_DamAswan Dam on the Nile River in Aswan, Egypt

Background on Aswan High Dam

The Nile River snakes south to north for 4,160 miles through ten North African countries until it reaches the Mediterranean Ocean.1 Its path is interrupted only by the great Aswan High Dam, which has brought both good and bad to the Egyptian people. Towering 364 feet tall and stretching 12,565 feet along its crest, the Aswan High Dam is impressive.2 This dam was opened in 1971 after a decade of construction and seeking funds from the Soviet Union.3 Its transboundary reservoir, Lake Nasser, which backs up into Sudan for 300 miles, holds nearly two years’ worth of water from the Nile River.

Benefits of the Aswan High Dam & Lake Nasser

The High Dam, replacing a 1902 Low Dam, annually generates more than 10 billion kilowatt hours of electricity, facilitating Egypt’s path to industrialization. This new dam also marked a major shift in Egypt’s agricultural prospects. Previously, Nile River Basin farmers were forced to depend on fickle seasonal flooding, which could bring appropriate levels of water one year and often completely washed away soil the next. Such unpredictability made it hard to grow a reliable crop; and the Nile’s single flooding season precluded farmers from having more than one harvest per year.

Lake Nasser’s surplus of water has well served the irrigation needs of Egypt and Sudan, since water availability is especially critical, given Egypt’s growing population and increasing water needs. (NB:  NWNL is studying these trends that portend dire water scarcity in the near future.) The Aswan Dam now allows for two to three crop cycles annually.  Nearby aquifers are inundated by increased amounts of water due to year long, rather than seasonal irrigation.  Water levels are carefully monitored and extra water is saved for times of drought. There has been huge economic benefit to the fact that the dams has allowed Egypt to triple the output of its most important and profitable crops, wheat and cotton.5  

Lake-nasserLake Nasser in Egypt.

Thus, the Aswan High Dam created a new future of irrigation water, flood control and electricity – but came with disconcerting drawbacks. Its story and continued influence on the Nile River illustrate how human ingenuity can inadvertently take a toll on the environments and ecosystems we so rely on.  The degradation of Nile ecosystems and the influx of increasing chemical runoff are reminders of the negative impacts that infrastructure, intended to improve quality of life, can have on nearby environments and habitats for all species, including humans.

Consequences of the Aswan High Dam & Lake Nasser

While Lake Nasser reservoir has allowed for controlled downstream flows into northern Egypt, that backlog of Nile water forced the relocation about 100,000 people to other lands in Sudan and Egypt.6 Abu Simbel Temple and 22 historical structures fortunately were moved under UNESCO’s watchful eye, yet Buhen Fort, the Fadrus Cemetery and other archeological sites (whose relocation would have been too costly) were submerged.

Stagnant waters in Lake Nasser have threatened the health of people using or residing near the Nile River waters. Downstream, the dam promotes the presence of schistosomiasis, a parasitic disease also known as bilharzia or “snail fever.” Schistosomiasis kills more than 200,000 Africans annually; and 20 million sufferers develop disfiguring disabilities from complications, kidney and liver diseases, and bladder cancer.

Egyptian_harvest.jpgTomb Painting of Peasants Harvesting Papyrus

Seasonal flooding once brought thick layers of dark silt to farms, which farmers used a natural fertilizer. Unfortunately, the Aswan High Dam almost completely blocks the movement of nutrient-rich sediment downstream. (NB:  NWNL has seen similar impacts of Ethiopia’s new Gibe Dams, ending 6,000 years of flood-recession agriculture practiced by pastoralists in the Lower Omo River Basin.) As rich Upper Nile sediments collected behind the dam, Egyptian farmers resorted to toxic chemical fertilizers that drain into the Nile. These pollutants can cause liver disease and renal failure in humans.7 

Farming phosphates running into the river increase algae growth. Algae blooms, elicited by excess nutrients (eutrophication), produce cyanotoxins, which affect the health of fish and may poison humans.At the same time, fish populations no longer benefit from nutrients that used to be in upstream Nile sediments. Aquatic species in the Mediterranean Sea near the Nile Delta have suffered similarly from decreased natural nutrients and increased chemicals.9

Riverbanks also suffer from a lack of replenishing sediments as their erosion continues unchecked.  Prior to the dam’s construction, the average suspended silt load was 3,000 parts per million (ppm). Post-construction silt levels have declined to 50 ppm.10 Further downstream, the Nile Delta suffers from a lack of silt replenishment. [NB:  NWNL has documented parallel deltaic losses and damage in the U. S., as  levees along the Mississippi River withhold sediment that used to rebuild storm erosion in the Mississippi Delta.]

Silt-free water along with a lower current velocity and steady water levels have enabled invasive aquatic weeds to infest the Nile River and its irrigation canals. Large volumes of aquatic weeds, water hyacinths in particular, create stagnant water conditions, impair water flow, provide breeding grounds for malaria-carrying mosquitoes and prevent the passage of boats whose propellers become clogged with invasive weeds.  Prior to the dam’s construction, these weeds were unable to flourish due to the Nile’s varying water levels and the force of its flow.11

Eichhornia_crassipes_C.jpgWater Hyacinth  (Credit: Wouter Hagens)

Erosion in the Nile Delta is especially threatening because it has led to saltwater intrusion.   (NB: Again, this is another issue also occurring in the Mississippi River Delta.)  Increased groundwater salinity from the encroaching Mediterranean Sea is decreasing cotton and rice yields.12 Additionally, fertilizers have further heightened saline levels.13

Beyond Aswan:  Footnote by NWNL Director Alison Jones

In 2009, Egypt was the most populous, agricultural and industrial country in the Nile Basin.14 The Aswan Dam has been a major factor in this march by Egypt to progress and prosperity.  However, just as the Aswan Dam came with a price – so will the upstream Grand Renaissance Dam, now under construction in Ethiopia on the Blue Nile River.  It is likely the impacts of this new Ethiopian dam – the largest ever on the African continent – will be even more consequential to Egypt than those of the Aswan High Dam.  It seems a new chapter is about to be written regarding settlement of transboundary conflicts spawned from disputes over dam impacts and upstream-downstream water rights.

Sources

1“Nile River Facts.” Africa Facts. Web. 2017
2Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
3Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
4Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 600
5Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. 2012. p 389
6Caputo, Robert. “Journey up the Nile.” National Geographic. May 1985. p 602
7Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
8El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
9Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 389. 2012.
10Biswas, Asit K.; Tortajada, Cecilia. “Impacts of the High Aswan Dam.” Third World Centre for Water Management. P 385. 2012.
11El-Shinnawy, Ibrahim A.; Abdel-Meguid, Mohamed; Nour Eldin, Mohamed M.; Bakry, Mohamed F. “Impact of Aswan High Dam on the Aquatic Weed Ecosystem.” Cairo University. September 2000. p 535-538.
12Theroux, Peter. “The Imperiled.” National Geographic Magazine. January 1997.
13World Wildlife Foundation. “Nile Delta flooded savanna.” Web. 2017.
14El-Sheekh M. “River Nile Pollutants and Their Effect on Life Forms and Water Quality,” in “The Nile.” (Dumont H.J, Monographiae Biologicae, Vol 89. Springer, Dordrecht)
All photos used based on fair use of Creative Commons and Public Domain.

Oh, dam!

What Is A Dam? A dam is a structure, often quite large, built across a river to retain its flow of water in a reservoir for various purposes, most commonly hydropower.  In the U.S. there are over 90,000 dams over 6 feet tall, according to American Rivers.  In 2015 half of Earth’s major rivers contained around 57,000 large dams, according to International Rivers.  Dams are complicated. This blog presents a look at some of the benefits, consequences and impacts of dams, along with NWNL photographs of  North American and African dams in our case-study  watersheds.

BC: Waneta, Columbia River Basin, Waneta Dam on Pend d'Oreille RiverDanger sign at the Waneta Dam in the Columbia River Basin (2007)
Jones_111022_LA_2865Atchafalaya Old River Low Sill Control Structure, Louisiana (2011)

The slowing or diversion of river flows caused by dams – and related “control structures” – can have severe environmental impacts. Many species that reside in rivers rely on a steady flow for migration, spawning and healthy habitats. Altered river flows can disorient migrating fish and disrupt reproduction cycles needing natural seasonal flows.

US: Washington, Columbia River Basin, aerial views of Chief Joseph Dam
Jones_070622_WA_4119Aerial views of Chief Joseph Dam in the Columbia River Basin (2007)

The introduction of a dam into a river creates a reservoir by halting a river’s flow. This can severely impact the quality of water. Still water can cause water temperatures to increase. Resulting abnormal temperatures can negatively affect species; cause algae blooms; and decrease oxygen levels.

Jones_070628_OR_5171_MJuvenile fish bypass at the McNary Dam in the Columbia River Basin (2007)
Ethiopia: aerial of Omo River, construction site of Gibe Dam IIIAerial view of the construction site of Gibe III Dam in the Omo River (2007)

Bryan Jones, featured in Patagonia’s documentary “Dam Nation,” discussed today’s situation with four aging dams on the Lower Snake River (authorized in 1945) in his 2014 NWNL Interview:  “We used science then available to conquer and divide our river systems with dams. But today we can look at them and say, ‘Well-intentioned, but it didn’t really work out the way we would’ve liked it to.'”  Dams that may have been beneficial at one point in history must be constantly reassessed and taken down when necessary to restore river and riparian ecosystems and species. Some compare dams to humans, since they too have a limited life span of about 70-100 years.

Jones_100413_UG_9603Small dam across the White Nile River in Uganda (2010)
East AFrica: Uganda, JingaConstruction of the Bujagali Dam on the White Nile River in Uganda (2010)

There are well-intended reasons to build dams.  In the US, the Federal Emergency Management Agency (FEMA) has listed the values of dams on their website.  Those benefits  include recreation, flood control, water storage, electrical generation and debris control. These benefits are explained on the FEMA website.

USA: Alabama, Tennessee River Basin, Guntersville Dam (TVA)Danger sign at the Guntersville Dam, Tennessee River Basin (2013)
Jones_150817_CA_5888Parker Dam (a hydrodam) on the Colorado River, Southern California (2015)

Between 1998 and 2000, the World Commission on Dams (WCD) established the most comprehensive guidelines for dam building, reviewing 1,000 dams in 79 countries in two years. Their framework  for decision-making is based on recognizing rights of all interested parties and assessing risks.  Later, the European Union adopted this framework, stating that carbon credits from large dams can only be sold on the European market if the project complies with the WCD framework.

Many conflicts swirl around the impacts, longevity and usefulness of dams.  NWNL continues to study dam benefits versus their impacts, including removal of indigenous residents in order to establish reservoirs;  disruption of the downstream water rights and needs of people, species and ecosystems; and relative efficiencies of hydropower versus solar and wind.  Dam-building creates consequences.  Native Americans studied risks of their decisions for seven generations.  After the Fukushima tsunami caused the release of radioactive material, Japanese novelist Kazumi Saeki wrote:  “People have acquired a desire for technology that surpasses human comprehension.  Yet the bill that has come due for that desire is all too dear.”

Sources and resources for more information:

American Rivers, How Dams Damage Rivers

International Rivers, Environmental Impacts of Dams

International Rivers, Problems with Big Dams

International Rivers, The World Commission on Dams Framework – A Brief Introduction

FEMA, Benefits of Dams

National Hydropower Association, Why Hydro

NWNL, Interview with Bryan L. Jones

New York Times, Kazumi Saeki, In Japan, No Time Yet for Grief

All photos © Alison M. Jones.

Future of the Mekong River is at risk

Dam construction along Mekong River, Laos
Dam construction along Mekong River, Laos

The Mekong River in Southesast Asia is one of the world’s longest waterways, and flows through 6 countries: China, Myanmar (Burma), Thailand, Laos, Cambodia and Vietnam. In November of 2014, NWNL followed the Mekong River from Chiang Khong, Thailand to Luang Prabang, Laos. This is part of the main stem of the river.

Development along the Mekong, Chiang Khong, Thailand, 2014
Development along the Mekong, Chiang Khong, Thailand, 2014
Mekong water used for crop irrigation, Chiang Khong, Thailand
Mekong water used for crop irrigation, Chiang Khong, Thailand
Fishery, Chiang Khong, Thailand
Fishery, Chiang Khong, Thailand

Fish make up 80% of the Southeast Asian diet.

Ame Trandem, Southeast Asia program director for the environmental group International Rivers, says the dam-building rush and climate change have brought the Mekong River Basin close to a “catastrophic tipping point”.

Dam construction in Laos
Dam construction in Laos

The proposal of several hydrodams would be devastating to millions of people who depend on the Mekong River for their livelihoods, food security, crop irrigation and let’s not forget wildlife!

Stay informed! Read more about this in “Cry Me a River.”

Check for updates on International Rivers and Save the Mekong.

Dam construction in Laos
Dam construction in Laos

NWNL Photo Exhibit, ‘Following Rivers’ opens @ BIRE March 14th

The Hudson River rises in pristine forests and enters tidal waters under heavily-trafficked urban bridges.  
The Hudson River rises in pristine forests and enters tidal waters under heavily-trafficked urban bridges.

On the banks of our rivers we raise families, grow food, do laundry, fish, swim, celebrate and relax. “Following Rivers,” a new exhibit by conservation photographer and No Water No Life Founding Director Alison M. Jones, tells a visual story of people and the critical water issues they face.

Combining the power of photography and science, NWNL, has spent 8 years documenting river basins in North America and Africa. The exhibit encourages viewers to translate images into questions. What are the impacts of our daily actions? How can we best protect our life-giving rivers and estuaries? Should we reduce resource consumption, require stronger pollution controls, minimize resource extraction, or forgo fossil fuels and material luxuries? How can we approach water as an opportunity for unity and cooperation, rather than a source of conflict?

Downstream impacts of new dams worry elders in Ethiopia’s Omo River Valley.
Downstream impacts of new dams worry elders in Ethiopia’s Omo River Valley.

NWNL believes the nexus of science and art, intellectual and physical resources, and local knowledge can effectively spread awareness of Nature’s unique interdependence and vulnerability of our watersheds’ glaciers, forests, wetlands, plains, estuaries, tributaries. Without raising that awareness, there will be no action.

The exhibit will be on view from March 14 through October 3, 2015.
Join us for a free public reception on Saturday, March 14 from 5-7 pm with Artists talks on April 11 and July 11, 2015 at Beacon Institute for Rivers and Estuaries, Clarkson University, 199 Main Street, Beacon, NY 12508 – (845) 838-1600. Gallery Hours: Tu-Th 9-5, Fri 9-1 Sat 12-6 (second Sat until 8)  Sun/Mon-Closed

Learn More about No Water No Life.

This event is part of a global campaign, celebrating International Day of Actions for Rivers.

Rivers in Africa and N America support migrations, but are also clogged by invasive species.
Rivers in Africa and N America support migrations, but are also clogged by invasive species.

Will the movie “DamNation” lead to the removal of the lower four Snake River Dams?

USA: WA, Columbia Snake River Basin, Garfield Co., Lower Granite Dam
USA: WA, Columbia Snake River Basin, Garfield Co., Lower Granite Dam

Since the release of the movie “DamNation” over a year ago, over 72 dams have been removed and over 730 miles of rivers were restored across the United States according to the non-profit conservation organization American Rivers. In January of this year, the producers of the movie met with members of Congress and White House officials regarding the removal of the lower four Snake River dams. Lower Granite is one.

NWNL documented the Snake River on an expedition last May interviewing stakeholders of the river including local farmers, an irrigation association, members of the Nez Perce Tribe, the manager of the Port of Lewiston, Idaho Power spokespersons and conservation organizations. Each group presented what the importance of the Snake River is to them. The only stakeholders we could not interview are the 13 species of salmon, the lamprey, the whales and other ocean-going creatures as well as the riparian vegetation that depend on an abundance of salmon to thrive. They are also voices of the river. Will some or all of the lower four dams be removed?  Check out the facts and myths page on the website of Save Our Wild Salmon. Further information about DamNation and its influence on dam removal is also available.

Blog post and photo by Barbara Briggs Folger.

Our Great Migrators

*NWNL thoughts prior to World Fish Migration Day-5/24.*

Many are unaware of the exquisite sarabande of life personified by our migratory species: anadromous fish, birds, monarch butterflies, dragonflies and others.

Most migratory species are threatened in one form or another during their annual passages by manmade impediments. Today, on expedition along the Snake River, NWNL is following the struggle of the Columbia River migratory salmon, steelhead and lamprey to overcome dams, pollution, warmer streams and other challenges as they seek their traditional spawning grounds. Fish passages at dams and fish hatcheries have helped them avoid extinction, but more help is needed to bring back healthy numbers of salmon.

US: Washington, Columbia River Basin, Ice Harbor Dam on the Snake River, bypass for juvenile salmon migrating downstream.