SOIL AND WATER: BIOCHAR

By Alice LeBlanc for NWNL
(Edited by Alison Jones, NWNL Director)

This is the second blog in a NWNL series on how soil impacts water quality and availability.  Alice LeBlanc is an economist and independent consultant who lives in NYC.   For more than 25 years, she has worked in both corporate and NGO settings to promote market-based and land-use sector solutions to the problem of climate change.

P1020965.jpg

PAYING ATTENTION TO SOIL

Soil has an indisputably important role in producing much of the food we eat and supporting trees and vegetation that provide wood, fiber, habitat, natural beauty and other ecological services.  However, the direct relationship between healthy soil and clean, plentiful water is perhaps less known. Often overlooked is the role healthy soils play in ameliorating environmental problems that include water pollution, water scarcity and climate change.

Conventional agriculture uses inorganic fertilizers and pesticides, aggressive tillage, heavy machinery and wasteful irrigation. These practices often degrade soils by their reduction of soil carbon and compaction. Resulting erosion and chemical run-off pollutes waterways and groundwater. Further, their greenhouse gas emissions become significant contributors to climate change.  Although increasing and stabilizing food production, modern agricultural practices hurt our soil and water – two of the most basic elements essential to life on earth,

“Climate Smart Agriculture” (CSA) is a current buzzword of hope among environmentally-conscious agricultural experts, especially in developing countries. CSA combines cost-effective practices to increase soil health and crop productivity, use water more efficiently, decrease the use of inorganic fertilizers, and reduce or even sequester COand other greenhouse gases. CSA practices include low-tillage or no-tillage of soils; contour tillage; drip irrigation; terracing of sloping fields; and organic or custom-made (precision) fertilizer. Last in this list is biochar – a substance used successfully centuries ago by Amazon farmers.

P1020866.jpgKilns used for making biochar

BIOCHAR TODAY

Biochar is created by applying high heat to biomass (e.g. crop residues, otherwise burned or left to decay in the atmosphere) in enclosed, oxygen-free spaces.  This process, called pryolysis, differs from burning as it doesn’t use oxygen; produce combustion; or emit CO2.  Biochar can be produced anywhere inexpensively on a small scale by subsistence farmers with cook stoves or kilns, using on-hand materials.  It can also be produced on medium and larger commercial scales.

When used as a soil amendment, biochar alters the soil’s property, allowing it to retain more water and nutrients and enable some plants to more efficiently “fix” atmospheric nitrogen, thus attracting more microbes.  This improves plant growth and resilience.  Biochar’s effect is described as creating “microbe hotels” which draw microorganisms and bring additional carbon into the soil. To be most effective in increasing plant productivity, biochar can be mixed with organic fertilizer such as manure and ground animal bones.

P1020867.jpgBiochar production area

For the past year or so, I have been helping lay the foundation for the African Holistic Ecosystem Regeneration Initiative–HERI (a Swahili word for happiness).  HERI aims to scale up regenerative and climate smart agriculture, as well as better grazing practices across Africa. Our emphasis is specifically on smart use of biomass and nutrients, including using biochar as a soil amendment and planting of soil-enhancing trees with high-value crops, such as palm oil, coffee, cacao, shea butter, cashews and moringa.  This undertaking is being led by the International Biochar Initiative (IBI), the leading non-profit dedicated to the promotion of biochar research and commercialization.

BIOCHAR BENEFITS

The agricultural benefits of biochar as a soil amendment include increased food security and crop productivity, greenhouse gas reductions, increased resilience to climate change impacts, and poverty alleviation.

Many African soils are losing soil’s organic matter at dramatic rates, which has degraded soil fertility to an extent that threatens livelihoods of subsistence farmers in entire regions.  Biochar combined with organic fertilizer has been demonstrated in many small pilot projects in Africa and around the world to significantly increase soil productivity; retain more water; and sequester carbon, especially in highly weathered tropical soil.

P1020868.jpgMilkiyas Ahmed, Lecturer, Jimma University, College of Agriculture, holding crop residue to be turned into biochar

While results vary depending on materials used to make the biochar, soil and crop type, fertilizer materials and climatic conditions, biochar increases productivity on average by 25% in tropical regions – and up to 80% if nutrient-rich feedstocks are used to make the biochar. If the soil is of extremely poor quality to begin with, productivity increase due to biochar can be significantly greater, yielding 100% to 500% increases.

Another benefit is improved soil fertility when biochar use, combined with planting perennial tree crops, pulls more CO2 out of the air.  That carbon is then stored in increased amounts in above-ground biomass and root systems.  Those trees’ root systems then further contribute to soil health.  Additionally, the ability to sell perennial crops with higher yields, gained when using biochar and natural fertilizer, will generate higher revenues.

P1020873.jpgBins used to compost biochar with different fertilizer materials

Biochar systems, when properly designed, aregreenhouse-gas neutral.  They even become greenhouse-gas negative when they sequester carbon in woody biomass, roots and soils, and more microbes increase soil carbon.  As well, heat or combustible gases can be recovered from the biochar production process to generate usable renewable energy or electricity. In Africa, biochar produced with individual “cook stoves” has been used to generate heat as a clean, renewable energy for cooking.  When biochar is produced on a larger scale in big machines, a combustible, renewable gas can be fed into an electric generator to serve a micro-grid. Energy production from biochar production in some cases in Africa could generate revenues.

As well as direct benefits to agricultural production, biochar combined with agroforestry can improve water use efficiency; protect watersheds, water quality and water quantity; and decrease deforestation pressures.Without these measures, the outlook for subsistence farmers and food security in Africa is grim, especially in the face of increasing duration and frequency of droughts due to climate change and explosive African population growth.

P1020884.jpgPlots for testing the impact of different biochar plus fertilizer combinations

IN THE FIELD

On a recent trip to Ethiopia, I visited a biochar pilot project conducted at the University of Jimma in collaboration with Cornell University.  The project is evaluating the effectiveness of different formulas for co-composting biochar with natural fertilizers.  This work is being done in tandem with several dozen farmers incorporating biochar in their fields.

Jimma is on the Awetu River about 150 miles southwest of Addis Ababa, not far from the lakes of the Great Rift Valley.  It was my first visit to sub-Saharan Africa and my first visit to fields of small farmers there. Milkiyas Ahmed, a faculty member at the Agricultural College, gave me a tour of the biochar production machines.  I saw vats where the biochar co-composting is done, and plots where different crops are grown, with and without the biochar amendment.  In the trees around the experimental plots, black-and-white monkeys eyed the tender young plants.  A guard stood ready to scare them off if necessary.

P1020922.jpgA farmer in the village who has seen gains from biochar

We walked through the village of farmers with whom Milkiyas worked.  We visited fields of the farmer who set the highest bar for producing and using the biochar.  His method for making biochar in a hole in the ground was a very low-cost method indeed. The multi-cropped fields, containing a variety of perennial trees, enhanced a beautiful landscape.  There were two young boys swimming in a stream that ran through the fields on that warm Sunday afternoon.  One could only hope and expect that the water quality was safe and swimmable — which it could be with the right set of agricultural practices.

P1030024.jpg

 

All photos © Alice LeBlanc.

Soil and Water: An Intro

By Jillian Madocs, NWNL Research Intern
(Edited by Alison Jones, NWNL Director)

 

This blog begins a NWNL series on how soil impacts water quality and availability.  Our research intern Jillian Madocs is a Siena College senior studying  Environmental Studies & Community Development.  Her next NWNL focus will be on urban water issues. 

Jones_130521_IA_3205.jpgStewardship in Cedar Falls, Iowa – Mississippi River Basin

Soil is a critical element of our watersheds – and the hero of agriculture. As a holding pen for seeds and roots, soil gives life to the plants that dwell in it; provides nutrients to local flora; and is home to millions of organisms, from burrowing insects to grazing livestock. Now more than ever, the agricultural industry is booming. Yet we must carefully consider the impacts of today’s increasing demands by growing populations around the world for more food, water and farmland.

Over 70% of our freshwater usage is attributed to farming, per the Organization for Economic Co-operation and Development, et al.  As we face increasingly severe droughts, disappearing glaciers and groundwater depletion, farmers will need to find enough water to irrigate their crops and support livestock.  Soil quality and farming practices will play a highly critical role in ensuring water security for the future.  Farmers are critical to helping protect our finite water supplies, since they can creating greater water retention within our soils, plant more drought-tolerant crops, and change other agricultural practices that waste water.  

Jones_110729_NJ_0104.jpgCorn growing in New Jersey – Raritan River Basin

With proper care, soil can support farming with minimum degradation. To sustainably produce crop yields needed for future generations, soil must receive the same amount of scientific attention and protection as that given to crops or livestock. Taking over the remaining headwater forests that fill our rivers to create more fields and applying more chemicals are not sustainable answers.

To maintain prosperity, avoid famine and ensure long-term sustainability, the agricultural sector must reduce its consumption of water by reassessing its very foundation –  soil. Unfortunately, the pressure for greater profits and agricultural yields has led to unsustainable farming practices and water usage. Current practices also severely diminish biodiversity within the soil, as well as the variety of livestock and plants produced. As a result, farmers and consumers alike are suffering economic losses and our foods are less nutritious. Our global food security is being threatened.1

Jones_160211_K_0022.jpgPeter Kihui’s Kickstart pedal pump waters his veggies, Kenya – Mara River Basin

Endangerment of agronomy aside, it is clear these problems impact much larger systems –  the water cycle, global biodiversity, national economic health, and human livelihood. If unsustainable agricultural practices are continued, farmers will seriously limit their future options. Thus, farmers must study and reconsider their land-management and food production practices. Today’s preventive measures are tomorrow’s solutions.

A NWNL blog series this summer will share agricultural innovations that increase water retention in farming soils and promote sustainability.  Guest bloggers will contribute insights on how soil management and sustainable farming can protect the health of our rivers and availability of freshwater. These blogs will also discuss regenerative agriculture, no-till farming, biochar application, vegetation strips and and the use of rotating and cover crops. These practices and technologies are designed to improve water conservation, and simultaneously provide carbon sequestration, restoration of soil biodiversity and increased crop yields.

Jones_130519_IA_8444.jpgDairy cows on an Iowa farm – Mississippi River Basin

Topics to be addressed by future NWNL blogs:

Regenerative Agriculture: This holistic approach to farming maintains the integrity of the land, while  also promoting healthy soils, greater yields and environmental vitality.2 This organic approach can restore and enhance soil’s natural ability to store carbon.3 This can reverse the impacts of over-planting crops in diminishing natural carbon sequestration to minimal time for the soil to recuperate. Regenerative agriculture offers a multi-pronged solution to the ever-growing problems of climate change, water scarcity and increasing food needs.

No-Till Farming: This technique conserves nutrients in the soil without the use of chemicals. Traditional tilling repeatedly turns the earth at least 8 to 12 inches deep. Loosening the soil this way allows water and oxygen to reach difficult-to-access plant roots.4 However, tilling, or plowing, breaks up the soil structure, leaving a perforated top layer resting on a hard pan that becomes deeply compressed over time. As learned during the US Dust Bowl, that encourages wind erosion and loss of valuable soil. No-till farming prevents this by planting seeds a few inches into the soil and letting organic materials to do the work that a plow would otherwise do.5 By  not interfering with the soil prior to planting seeds, more nutrients and organic elements are available to the plants. Thus, chemical fertilizers need not be applied.

Jones_140517_ID_1824.jpgPlowing Idaho farmland – Snake River Basin

Biochar: For centuries, some of the world’s indigenous farmers understood that “fine-grained, highly-porous charcoal helps soils retain nutrients and water.”6 Carbon-rich and comprised of agricultural waste, biochar is highly resistant to decomposition, thus an ideal additive to soils. This product has many benefits from local to global scales. Biochar increases soil biodiversity, improves crop diversity, enhances food security in at-risk areas and increases water quality and quantity. Furthermore, biochar combats climate change by creating “pools” that sequester carbon in the soil from hundreds to thousands of years. Thus biochar has the capacity to make soil systems “carbon-negative” and ultimately help reduce excess carbon emissions into the atmosphere.7

Vegetation Strips:  Runoff pollution and soil loss can be controlled with buffering and filtering strips of land covered with permanent vegetation.8 These barriers prevent soil from being carried away, thereby reducing field, riverbank and shoreline erosion.  They also prevent excess sediment from collecting in bodies of water.  Vegetative strips also collect pollution, pathogens, and excessively-applied chemical nutrients before they reach and impair ditches, rivers, ponds and lakes.9 These filters are valuable water-quality improvement agents that maintain soil integrity, especially in regions with loess soil found in Iowa and Washington’s Palouse region. Dust Bowl analyses revealed the critical need for creating vegetation strips and trees as “windbreaks” to reduce erosion and drying winds.  Yet, modern agriculture  has removed many such “green” barriers, to gain a bit more acreage for planting their crops.  Hopefully this trend will be reversed.

Jones_030728_K_0339.jpgProtective vegetative strips in Kenya wheat fields – Mara River Basin

Crop Rotation: Even the simplest of vegetable gardens can be kept healthy through successive seasons if plants are switched around to different sections. Such rotation helps prevent disease and insect infestation, while also balancing and enhancing nutrients.10 For example, a plot with carrots, then cucumbers, and maybe lettuce planted in succeeding years deprive diseases and parasitic insects of long-term host sites. Additionally, soils dried out by particularly water-thirsty crops can regain their moisture balance with planned rotation.11

Cover Crops: Often called “green manure,” grasses, legumes, and herbs planted to control erosion can also increase moisture and nutrient content, improve soil structure, provide habitat for beneficial, bio-diverse organisms, and much more.12  Because vegetables so quickly deplete, dry out and otherwise stress the soil,13 restorative practices are essential to ensure the soil’s optimal performance.  Cover crops are used to improve soil health – and they also beautify gardens!14

Jones_170614_NE_3864-2.jpgPivot irrigation in Nebraska where it was invented – Platte River Basin

Agriculture is a major industry that ties together global needs for food and water. Thus, it is obvious that we must support the soil that produces our crops and consumes ¾ of our entire water supply.  Regenerative agricultural practices promise a balance between productive and healthy land, as well as between new technologies and common sense.  Robust soil means better produce, thriving organisms, less water consumption, and healthy watersheds. Without good soil, the food chain collapses and our ecosystems suffer. As more restorative farming practices are adopted, the future improves, especially for large-scale agriculture. This NWNL blog series will focus on how large- and small-scale agriculture can help solve global water scarcity by caring for the soil.

Jones_170616_NE_5022.jpgDouble rainbow over a Nebraska crop field – Missouri River Basin

Sources:

1. http://www.regenerationinternational.org/2015/10/16/linking-agricultural-biodiversity-and-food-security-the-valuable-role-of-agrobiodiversity-for-sustainable-agriculture/
2.  http://www.regenerationinternational.org/why-regenerative-agriculture/
3. http://rodaleinstitute.org/assets/RegenOrgAgricultureAndClimateChange_20140418.pdf
4.  https://www.motherearthnews.com/homesteading-and-livestock/no-till-farming-zmaz84zloeck
5.  https://morningchores.com/no-till-gardening/
6.  http://www.biochar-international.org/biochar
7. http://biochar.pbworks.com/w/page/9748043/FrontPage
8.  http://files.dnr.state.mn.us/publications/waters/buffer_strips.pdf
9. http://anrcatalog.ucanr.edu/pdf/8195.pdf
10.  https://www.todayshomeowner.com/vegetable-garden-crop-rotation-made-easy/
11.  https://bonnieplants.com/library/rotating-vegetable-crops-for-garden-success/
12.  https://plants.usda.gov/about_cover_crops.html
13. http://covercrop.org/why-cover-crops
14.  https://www.motherearthnews.com/organic-gardening/cover-crops-improve-soil-zmaz09onzraw

All photos © Alison M. Jones.