50 Years of the Wild & Scenic Rivers Act

Written by NWNL Project Manager, Sarah Kearns
with Research by Jenna Petrone

An unspoiled river is a very rare thing in this Nation today. Their flow and vitality have been harnessed by dams and too often they have been turned into open sewers by communities and by industries. It makes us all very fearful that all rivers will go this way unless somebody acts now to try to balance our river development.” — Lyndon B. Johnson, on signing the US Wild & Scenic Rivers Act in 1968.1

Jones_171027_OR_6986McKenzie River, Oregon, Columbia River Basin

On October 2 this year, the US will celebrate the 50th anniversary of the Wild & Scenic Rivers Act established to preserve rivers with outstanding natural, cultural and recreational values in their free-flowing condition for the enjoyment of present and future generations.2

At the time of enactment in 1968, eight rivers were given the designation of Wild & Scenic Rivers: Clearwater, Eleven Point, Feather, Rio Grande, Rogue, St. Croix, Salmon, and Wolf. As of December 2014, this National System, under the Department of the Interior’s Bureau of Land Management, protects 12,734 miles of 208 rivers in 40 states and Puerto Rico. The total mileage of this system represents about .35% of US rivers, compared to the 17% of US rivers totaling 600,000 miles, that are currently dammed or modified by 75,000 large dams.3

While .35% is a shockingly small percentage, the official anniversary website reminds us to celebrate the Act’s accomplishments over the past fifty years. The growth from protecting only 8 rivers to protecting 208 rivers spanning 12,000 miles is a huge accomplishment. We encourage all to celebrate in order to look positively to the future when another 12,000 miles could be designated!

Jones_170617_NE_5263Missouri River, Nebraska, Mississippi River Basin

What exactly is a “Wild & Scenic River?”

Under this Act, Congress can designate a river under one of three classifications: wild, scenic, or recreational. A designated river can be a segment or stretch of a river, not only its entire length, and can also include tributaries. 

How does a river get classified?

“Wild” River Classification: Rivers (or sections of rivers) that are “free of impoundments and generally inaccessible except by trail, with watersheds or shorelines essentially primitive and waters unpolluted.”

“Scenic” River Classification: Rivers (or sections of rivers) that are “free of impoundments, with shorelines or watersheds still largely primitive and shorelines largely undeveloped, but accessible in places by roads.”

“Recreational” River Classification: Rivers (or sections of rivers) that are “readily accessible by road or railroad, that may have some development along their shorelines, and that may have undergone some impoundment or diversion in the past.”4

Jones_140510_WA_0743Snake River, Washington, Columbia River Basin

It is important to note that the type of classification doesn’t change the type of protection each river or segment receives! All rivers/segments designated under the Wild & Scenic Rivers Act are administered with the goal of protecting and enhancing the values that caused it to be designated to begin with. This protection is administered by federal or state agencies, which is provided through voluntary stewardship.5

Of the 208 rivers & river segments, 23 are located in NWNL’s US Case-Study Watersheds and Spotlights:  Columbia River Basin, Mississippi River Basin and California. Between now and the official October 2 anniversary, we will post several more blogs with photographs of many of these designated rivers.

Jones_160927_CA_6002Merced River, California

How can you celebrate?  NWNL encourages everyone to support all of our rivers and freshwater waterways, particularly the ones protected under the Wild & Scenic Rivers Acts. Swim in your local recreational river; go boating; organize a “Bioblitz;” join your local river stewardship organization; and most importantly, talk to your friends and families about why our river are so vital to our country!  This interactive story map shows whether you live near a designated river or river segment! For more information about 50th Anniversary events, view the official National Wild and Scenic Rivers System toolkit.

USA: Wisconsin, Upper Mississippi River Basin and St Croix River Basin,St Croix River, Wisconsin, Mississippi River Basin

Sources

1http://www.presidency.ucsb.edu/ws/index.php?pid=29150
2https://www.nps.gov/orgs/1912/index.htm
3https://www.rivers.gov/wsr-act.php
4https://www.rivers.gov/wsr-act.php
5https://www.rivers.gov/wsr-act.php

All photos © Alison M. Jones.

Buzz Numbers

By NWNL Director, Alison Jones

As NWNL plans its website redo (to launch this fall), we envision “Buzz Numbers” on the home page.  What?  Well, “Buzz Numbers,” are our Project Manager Sarah’s take-off on “buzz words.”  Just another great tool to quickly project complex concepts.  So, while in that mode, here’s a NWNL BLOG with 0 references to specific watersheds and just 1 URL link. The Buzz Numbers below refer to values of, or impacts on, all rivers and streams in the Americas or East Africa, the 2 regions where NWNL case-study watersheds are located.

Jones_160319_CA_1544.jpgDrought in California, 2016

BUZZ NUMBERS for The Americas

  • 13%: The Americas’ share of world’s human population
  • >50%: Share of Americans with a water security problem
  • 50%: Decrease in renewable freshwater available per person since 1960s
  • 200-300%: Increase in human ecological footprint since 1960s
  • >95%: Tall grass prairies lost to human activity since pre-European settlement
  • >50%: US wetlands lost (90% in agricultural regions) since European settlement
  • 15–60%: American drylands habitat lost between 2000 and 2009
  • 5 million hectares [3.7 million acres]: Great Plains grassland lost from 2014 to 2015
  • $24.3 trillion: terrestrial nature’s annual economic contribution (=GDP)
    Jones_080530_WY_1866.jpgGrey Wolf in Yellowstone National Park, 2008

Projections for 2050 in the Americas

  • 20%: expected population increase (to 1.2 billion) by 2050
  • +/-100%: expected growth in GDP by 2050, driving biodiversity loss if ‘business as usual’ continues
  • 40%: loss of biodiversity expected by 2050 if climate change continues
———-
Jones_040828_ET_0050.jpgVillagers in Lalibela, Ethiopia with erosion in foreground, 2004

BUZZ NUMBER Trends / Data for Africa

  • +/- 500,000: km2 [123 million acres] degraded by deforestation, unsustainable agriculture, overgrazing, uncontrolled mining activities, invasive alien species and climate change – causing soil erosion, salinization, pollution, and loss of vegetation or soil fertility
  • +/- 62%: rural population using wild nature for survival (the most of any continent)
  • +/- 2 million km2 [494 million acres]: land designated as protected
  • 25%: Sub-Saharans suffering hunger and malnutrition (2011–2013) in the world’s most food-deficient region
Jones_130118_K_1688.jpgCommercial fisherman preparing to sell in Nairobi, 2013

Economic Values of Nature’s Contributions East Africans

  • $1.2 billion: annual inland fishery value added
  • $16,000: annual food production per km2 [247 acres
  • $12,000: annual forest carbon sequestration per km2 (247 acres])
  • $11,000: annual erosion control per km2 [247 acres]

All our Buzz Number stats come from the Appendix of an ISPBES Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services March 2018 Report, sponsored by UN

Jones_120125_K_5464.jpgWoman collecting water from spring in Mau Forest, Kenya, 2012

 

All photos © Alison M. Jones.

What We’re Reading #1

Introducing a new semi-regular blog series: What We’re Reading!  For two months this winter, our NWNL Director Alison Jones was in Kenya. Among the many interviews and trips to the Omo and Mara River Basins, Alison was also busy reading during this expedition. The goal of this new blog series is to share the books NWNL reads and give you ideas of books to read about our watersheds!

Ruaha National Park: An Intimate View

ruahanationalpark.jpgWritten by Alison’s new acquaintance Sue Stolberger, this is the first field guide to trees, flowers and small creatures found in Ruaha National Park, and surrounding Central Tanzania. While not part of one of NWNL’s watersheds, flora and fauna within Ruaha National Park are very similar to that of Tanzania’s Serengeti National Park that is within the Mara River Basin.

 

 

 

 

 

Rivergods: Exploring the World’s Great Wild Riversrivergods.jpg

In this wonderfully photographed book, Richard Bangs & Christian Kallen raft down rivers across the globe. The first chapter covers the Omo River in Ethiopia, one of NWNL’s case-study watersheds, which the book calls the “River of Life.”

 

 

 

 

Ethiopia: The Living Churches of an Ancient Kingdom

livingchurches.jpg

Nigel Pavitt, an informal advisor to NWNL on the Nile and Omo River Basins and Carol Beckwith a friend of NWNL Director Alison Jones are two of the photographers for this stunning large-format book tracing art, culture, ecclesiastical history and legend in Ethiopia’s Blue Nile River Basin.

 

 

 

 

 

 

Web Design: Make Your Website a Success

webdesign.jpg

Finally, NWNL would like to make a special announcement:  we are re-designing our website!  In preparation for that,  Alison  read a helpful book by Sean McManus on easy steps to designing websites. Simultaneously, a team of experts were working with our Project Manager in our NYC office, so the process is already underway.  By the end of summer we will unveil our new website!

Day Zero – A Water Warning

By Stephanie Sheng for No Water No Life (NWNL)
Edited by NWNL Director, Alison Jones

Stephanie Sheng is a passionate strategist for environmental and cultural conservation. Having worked in private and commercial sectors, she now uses her branding and communications expertise to drive behavior change that will help protect our natural resources. Inspired by conservation photographers, The Part We Play is her current project.  Her goal is to find how best to engage people and encourage them to take action. 

Misc-Pollution.jpg

I was horrified when I first heard the news from South Africa of Cape Town’s water crisis and impending ‘Day Zero’ – the day their taps would run dry. Originally forecasted for April 16, then pushed out to May, the apocalyptic-sounding day has now successfully been pushed out to next year. Had Day Zero remained slated for April or May, Cape Town would have been the first major city to run out of water. Although postponed, the threat still remains, and thus restrictions on water usage to 13.2 gallons (50 liters) per day for residents and visitors. Water rationing and a newly-heightened awareness around water use is now the new, legally-enforced normal in Cape Town.

Two things struck me as I read about this situation. First, the seemingly unthinkable felt very close. My visit to Cape Town a few years ago reminded me of San Francisco, my home before New York. Suddenly I was reading that this seemingly-similar city was on the brink of having no water coming out of their taps. As that hit me, I considered what modern, urban life would be like when water is scarce.

ClimateChange-ColumbiaBC.jpgCape Town’s restriction of 13.2 gal (50 L) per day is miniscule in comparison to the 39.6 gal (150 L) per day used by the average UK consumer[1] and the 79.3 to 99 gal (300 to 375 L) per day used by the average US consumer.[2] Unsurprisingly, Cape Town had to undergo drastic changes. It is now illegal to wash a car or fill a swimming pool. Hotel televisions blare messages to guests to take short 90-second showers. Washroom taps are shut off in restaurants and bars. Signs around bathroom stalls say, “If it’s yellow, let it mellow.” Hand sanitizer is now the normal method of hand cleaning.WASH-Tanzania.jpgShocked by the harsh realities of what water shortage could look like here at home, I was inspired to walk through my day comparing my water habits to the new realities being faced by those in the Cape Town facing a severe crisis. I wanted to discover opportunities where I could cut back, even though I consider myself on the more conscious end of the usage spectrum.

Here is a breakdown of my average water usage per day while living and working in NY, based on faucets spewing 2.6 gal (10 L) per minute[3], and a toilet flush using 2.3 gal (9L).[4]

  • Faucet use for brushing teeth and washing face for 4 min/day: 6 gal (40L)
  • Faucet use for dish washing and rinsing food for 7 min/day:5 gal (70L)
  • Toilet flushes, 4/day: 5 gal (36 L)
  • Drinking water: 4 gal (1.5 L)
  • Showering for 9 min/day — 8 gal (90 L)

My water usage totaled roughly 62.8 gal (237.5 L) per day. That is lower than the average American’s usage, but still more than four times the new water rations for Capetonians!

Misc-NYC.jpg

Living in an urban city that isn’t facing an impending water shortage, it may be more difficult to control certain uses than others (e.g. not flushing the toilet at work). However, there are some simple, yet significant ways to lower our daily water use:

  • Turn off the faucet while you brush your teeth and wash your face.
  • Use the dishwasher instead of washing dishes by hand. Only run it when full.
  • Only run the laundry with full loads.
  • When showering, shut off the water while you soap up and shave. Put a time in your shower to remind you not to linger.
  • Recycle water when possible. If you need to wait for hot water from the faucet, capture the cold water and use it for pets, plants, hand washing clothes, and such.

VWC-Beef.jpg

Water use discussed thus far includes obvious personal contributors to our water footprint. But the biggest contributor is actually our diet. Agriculture accounts for roughly 80% of the world’s freshwater consumption[5]. Different foods vary greatly in the amount of water consumed in their growth and production. Meat, especially from livestock with long life cycles, contains a high “virtural water” content per serving. For example, 792.5 gal (3,000 L) of water are required for a ⅓ lb. beef burger[6] – representing four times as much water as required for the same amount of chicken. That virtual water content ratio is even greater when red meat is compared to vegetables.

We don’t have to become vegetarians, but we can cut down on meat and choose meats other than beef and lamb. That change alone would save hundreds of thousands of gallons (or liters) consumed in a year, which is much greater than the 18,069.4 gal (68,400 L) I’d save by reducing my current water usage to that of a Capetonian. Consideration of virtual water content offers some food for thought!

Sources

[1] BBC News
[2] United States Geological Survey
[3] US Green Building Council: Water Reduction Use
[4] US Green Building Council: Water Reduction Use
[5] Food Matters Environment Reports
[6] National Geographic
All images/”hydrographics” are © Alison Jones, No Water No Life®.
For more “hydrographics” visit our
website.

Lake Erie: A Solution to Vulnerability

By Judy Shaw, with Wil Hemker and John Blakeman for NWNL
(Edited by NWNL Director, Alison Jones)

Judy Shaw, professional planner and NWNL Advisor, and Wil Hemker, entrepreneurial chemist, are partnering with John Blakeman to promote prairie nutrient-retention strips as a proven way to protect Lake Erie’s water. They are encouraging schools and farmers in northwest Ohio to install demonstration strips and teach this effective means to stop harmful runoff from damaging our waterways. NWNL has documented this runoff problem in all its case-study watersheds and applauds this natural solution to chemical pollution of our waterways.

Untitled.jpgUpland prairie nutrient-retention strip. Photo by John Blakeman.

Imagine a very large body of fresh water supplying residents along 799 miles of shoreline with the very essence of their natural health. Lake Erie is such a vessel; carrying over 126 trillion gallons of precious water and serving millions of people in cities both in the USA and Canada. One such city is Toledo, Ohio. There, water from the Maumee River, which flows directly into the Western Basin of Lake Erie, provides fresh water to many in the region. Up to 80 million gallons of water is drawn from Lake Erie every day to supply Toledo and other municipalities with treated drinking water. 2

However, runoff from agricultural lands taints the water with phosphorous. In 2014 runoff caused extensive blooms of green algae, creating toxic microcystins – toxins produced by freshwater cyanobacteria, also called blue-green algae.3 This rendered the water on which the city relied as undrinkable. Today, four years later, continued flows of phosphorus-laden water still make this treasured natural resource vulnerable.

So what can be done? 

Many scientists have studied the problem. They’ve universally agreed that rainfall runoff from row-crop fields, suburban and urban land, and roadways is the root of the problem. As the City of Toledo rushes into a $500 million upgrade to its water treatment plant, the source remains completely uncontrolled.4

Jones_130520_IL_8783.jpgRunoff from row-crop fields after rain, Illinois.

Fortunately, solutions to manage rainfall runoff pollution are at hand. 

Through the work of many dedicated Midwest scientists, it has been determined that the presence of tallgrass prairies and seasonal, agricultural “cover crops”5 can arrest the phosphorous and nitrogen that historically has streamed directly into feeder streams and large watersheds like the Maumee River Basin.

On the matter of cover crops, it is important to note that wheat is planted in closely-spaced rows. Non-row crops include hay and alfalfa, planted en masse, not in rows. Alfalfa, because it is grown as a crop and is harvested, is not generally regarded as a cover crop. Cover crops are seldom, if ever, “cropped,” or harvested. Instead they are killed, or die, and left on the soil surface. Generally, cover crops are not true cash crops in the sense of harvesting and marketing.

Ohio prairie researcher John Blakeman found that edge-of-field strips of perennial tallgrass prairies can absorb algal nutrients in storm-water runoff, thus protecting the waterway while also enriching the prairie plants, or forbs. The tallgrasses and forbs (“wildflowers”) of native tallgrass prairies include big bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), switch grass (Panicum virgatum) and a dozen or more species. All of these once grew naturally in northwest Ohio and exist today in a few “remnant prairie” ecosystems. Thus tallgrass prairies can be commercially planted with success in Ohio.

From John’s research with colleagues and published supportive findings from Iowa State University, he developed methods of planting a robust mix of native Ohio prairie species. He has planted them in several sites, including the NASA Glenn Research Center’s large Plum Brook Station near Sandusky, Ohio. Iowa State University has proved the ability of the prairie plants to absorb the renegade nutrients. The critical step is to persuade those engaged in Ohio agriculture to plant 30–60’ strips of tallgrass prairie species along the downslope edges of row-crop fields, where runoff water percolates before draining downstream to Lake Erie.

Jones_130520_IA_8937.jpgTallgrass Prairie, University of Southern Iowa.

Criticality? High. 

With these strips, Iowa research shows that up to 84% of the nitrogen runoff and 90% of the phosphorous can be captured by the plants, and the water running into the river is virtually clean. The levels of nitrogen and phosphorus exiting the field can no longer foster blooms of toxic green algae, such as those that crippled Toledo’s water supply in 2014.

Vulnerability beyond Lake Erie?

Non-point source pollution (i.e. sediment and nutrient runoff from ever-more-intense rainfall events onto rural row-crop fields, suburban fertilized lawns, and massive expanses of roadway and urban pavement) lies at the root of Lake Erie’s problem. This problem however extends beyond harmful algal blooms in streams, lakes, and Toledo’s drinking water source. It is the cause of huge hypoxic zones in the Great Lakes, the Gulf of Mexico (from the Mississippi River drainage), and North American eastern coastal waters.

Some good news?

Several Ohio farmland stakeholders are listening and learning about prairie grass strips at field edges. They are considering how to research and demonstrate upland prairie nutrient-retention strips so more farmers, in time, might use this algal nutrient-suppression practice. Expansive adoption of these strips will reduce phosphorous and nitrogen runoff from agricultural lands, helping obviate harmful algal blooms in Lake Erie.

Jones_130520_IA_8938.jpgTallgrass Prairie, University of Southern Iowa.

All communities need to reduce non-point source pollution. There are many ecological practices communities can practice, including:

  • decreasing suburban and urban pavement
  • increasing tallgrass and forb plantings
  • designing prairie and wetland drainage swales
  • conserving water use

If we all understand the sources of pollution and commit to take action, it will only be a matter of time before other watersheds in Ohio and across the country increase their water quality by using upland prairie nutrient-retention strips and thus also expand green spaces.

How can you be part of the solution?

First, become informed. Many US federal, state and community governments are measuring and attempting to act on non-point source pollution. Learn more about your state and community programs.

Second, take action by changing your and your family’s personal water use. Change your home and neighborhood water and rainwater practices. Here are some suggestions from The Nature Conservancy.

Jones_130520_IA_8935.jpgTallgrass Prairie, University of Southern Iowa.

Lastly, connect back with No Water No Life. Let us know how you and your neighbors outreach to community, state, and federal government leaders is changing infrastructure and community water resource practices.

The strongest governments on earth cannot clean up pollution by themselves. They must rely on each ordinary person, like you and me, on our choices, and on our will.  –2015 Chai Jing, Chinese investigative reporter, and documentary film maker.

 

Footnotes:

1The capacity, over 127 trillion gallons, is extrapolated from USEPA Lake Erie Water Quality report, which notes the water volume as 484 cm3.
2 Toledo Division of Water Treatment.
3 The Florida DEP states, “Microcystins are nerve toxins that may lead to nausea, vomiting, headaches, seizures and long-term liver disease if ingested in drinking water.”
4 US News.
5 Cover crops are quick-growing, short-lived, low-height plants planted to give full coverage of bare soil, in the dormant seasons, (fall, winter, early spring). They are short-lived; serve only to cover the soil to reduce erosion; and retard growth of weeds before row-crops are planted.

 

All photos © Alison M. Jones unless otherwise stated.

The Water Scarcity Problem That’s Destroying Countries Pt. 2: The Consequences

Guest Blog by John Hawthorne

The main aspects of economic water scarcity are:

  • A lack of infrastructure with poor sanitation policies. The population has no other choice but to rely on rivers and lakes for their hydration.
  • Much of the water is used for agriculture and domestic chores. Evidence suggests that in many cases the water is “recycled” for different uses. Bathing, laundry, livestock, cleaning and cooking water not only comes from the same source but is oftentimes reused from one chore to another.
  • Large parts of the world, particularly in Africa, suffer from economic water scarcity. Developing the right infrastructure would lower the poverty line.
  • Terrorist groups and local warlords use their own wealth and resources to create the needed infrastructure, the major caveat being that they control the pipeline and in turn use it for their own goals – mainly recruitment.
  • Developing infrastructure in these areas not only requires funding but a complete overhaul of socio-political doctrines.

shutterstock_648093169.jpg

Consequences of water scarcity:

  • Using unclean water, in many areas, leads to an upswell of different disease, some of which are fatal.
  • In Africa, women spend half of their day walking and hauling up water from a clear source. The same goes for sections of India and Latin America. It is estimated that in the remotest parts of Africa, the female population spends a combined total of 40 billion hours a year walking to and from a well.
  • Communities don’t have the time to grow. Most families waste a great deal of their productive hours dealing with the problems that arise from water scarcity. Access to clean water gives families time to go to school and earn an adequate income, helping them fight off poverty.
  • It takes an enormous amount of water to grow crops, maintain livestock and ultimately feed a nation. Less water means a rise in endemic and localized famine.
  • Less water means less sewage flow and more stagnant water. These pools, particularly in tropical and subtropical environments, often become fast breeding ground for insects and parasites. One of the most far reaching and prevalent insects is the mosquito, a known carrier of West Nile Virus, malaria, zika and other infections.
  • Economies that, due to their natural landscapes could easily increase their gross income and national wealth through a busy tourist trade, have had no other choice but to closethis venue of revenue. Hotels, restaurants, shopping stores and other attractions no longer are able to maintain an adequate level of sanitation for visitors.

shutterstock_385317616.jpg

Countries with a high degree of water scarcity:

All countries suffer from water scarcity in one way or another.

For example, the United States, a nation that takes for granted the gift that is drinkable tap water, is in the midst of a major water crisis. The Western States, among them California, are having to cut back on water delivery to certain areas. The Metropolitan Water District of Southern California, the region’s water supplier, will deliver 15% less water to cities in the greater Los Angeles area starting in July 2018.

Nonetheless, the US and other first world nations have the advantage of a growing and confident economy, one that can acclimate itself to any sort of natural woe by investing heavily in infrastructure.

Others are not so lucky. 3 countries standing on the brink of complete water related collapse are:

  • Yemen: According to UPI, Yemen’s capital, Sanaa, is expected to be the first major city in the world to experience full water scarcity, a direct result of the many turmoils and local military brews of the area.
  • Libya: Another war torn country that’s facing a full sanitary cataclysm, the constant regime changes and wild political upheavals are taxing the nation’s capacity to create a viable water policy.
  • Jordan: The country of Jordan finds itself in one of the driest geographical latitudes in the planet. Its only source of water is the Dead Sea and the Jordan River. Transforming saltwater to fresh is a financial hurdle that’s hurting their weak economy.

Conclusion

The United Nations considers water scarcity to be one of the most detrimental and crippling crisis attacking struggling economies and communities.

The Millennium Development Goals (8 fundamental objectives established by a committee of different nations within the United Nation) established the necessity of making water scarcity a key problem to eradicate. The United Nations Millennium Declaration, following the Millennium Summit, aimed by 2015 to “halve the proportion of people who are unable to reach or to afford safe drinking water.”

While we may not have solved the problem of water scarcity, we’re certainly making an effort to minimize the problem in as many ways as possible.

Audrey Hepburn said, “Water is life, and clean water means health.”

She knew what she was talking about.

 

John Hawthorne is a health nut from Canada with a passion for travel and taking part in humanitarian efforts. His writing not only solves a creative need it has also lead to many new opportunities when traveling abroad. This article was republished with his permission. The original article can be found here.

World Wetlands Day 2018

World Wetlands Day – February 2, 2018
blog by Sarah Kearns, NWNL Project Manager

BOT-OK-107.jpgOkavango Delta, Botswana, Africa

What are “wetlands”?

Synonyms: Marsh, fen, bog, pothole, mire, swamp, bottomlands, pond, wet meadows, muskeg, slough, floodplains, river overflow, mudflats, saltmarsh, sea grass beds, estuaries, and mangroves.

Jones_070605_BC_1624.jpgDevelopment on edge of Columbia Wetlands, British Columbia

Worldwide, wetlands regulate floods, filter water, recharge aquifers, provide habitat, store carbon, and inspire photographers & artists.

Jones_111024_LA_8655.jpgCyprus trees in Atchafalaya River Basin Wetlands, Louisiana

Wetlands control rain, snowmelt, and floodwater releases: mitigation that is more effective and less costly than man-made dams. Nearly 2 billion people live with high flood risk – This will increase as wetlands are lost or degraded.

Jones_091004_TZ_2124.jpgFishing boats among invasive water hyacinth in Lake Victoria, Tanzania

Wetlands absorb nitrogen and phosphorous which provides cleaner water downstream for drink water supplies, aquifers and reservoirs.

Jones_091002_TZ_1209.jpgWoman collecting water in Maseru Swamp, Tanzania

Wetlands absorb heat by day and release is at night, moderating local climates.

Jones_111021_LA_2490.jpgRed-earred turtles in Bluebonnet Swamp, Baton Rouge, Louisiana

We all need the clean air, water, and protection from flooding that wetland forests provide. But up to 80% of wetland forests in the US South have disappeared. What are our standing wetland forests worth? Let’s be sure we invest in our wetland forests. (From dogwoodalliance.org)  Worldwide, we must protect our wetlands.

Jones_150817_AZ_5849.jpgSouthern tip of Lake Havasu and incoming Williams River and its wetlands, Arizona

To learn more about World Wetlands day visit http://www.worldwetlandsday.org.

All photos © Alison M. Jones.