Archive for February, 2018

Lake Erie: A Solution to Vulnerability

February 20, 2018

By Judy Shaw, with Wil Hemker and John Blakeman for NWNL
(Edited by NWNL Director, Alison Jones)

Judy Shaw, professional planner and NWNL Advisor, and Wil Hemker, entrepreneurial chemist, are partnering with John Blakeman to promote prairie nutrient-retention strips as a proven way to protect Lake Erie’s water. They are encouraging schools and farmers in northwest Ohio to install demonstration strips and teach this effective means to stop harmful runoff from damaging our waterways. NWNL has documented this runoff problem in all its case-study watersheds and applauds this natural solution to chemical pollution of our waterways.

Untitled.jpgUpland prairie nutrient-retention strip. Photo by John Blakeman.

Imagine a very large body of fresh water supplying residents along 799 miles of shoreline with the very essence of their natural health. Lake Erie is such a vessel; carrying over 126 trillion gallons of precious water and serving millions of people in cities both in the USA and Canada. One such city is Toledo, Ohio. There, water from the Maumee River, which flows directly into the Western Basin of Lake Erie, provides fresh water to many in the region. Up to 80 million gallons of water is drawn from Lake Erie every day to supply Toledo and other municipalities with treated drinking water. 2

However, runoff from agricultural lands taints the water with phosphorous. In 2014 runoff caused extensive blooms of green algae, creating toxic microcystins – toxins produced by freshwater cyanobacteria, also called blue-green algae.3 This rendered the water on which the city relied as undrinkable. Today, four years later, continued flows of phosphorus-laden water still make this treasured natural resource vulnerable.

So what can be done? 

Many scientists have studied the problem. They’ve universally agreed that rainfall runoff from row-crop fields, suburban and urban land, and roadways is the root of the problem. As the City of Toledo rushes into a $500 million upgrade to its water treatment plant, the source remains completely uncontrolled.4

Jones_130520_IL_8783.jpgRunoff from row-crop fields after rain, Illinois.

Fortunately, solutions to manage rainfall runoff pollution are at hand. 

Through the work of many dedicated Midwest scientists, it has been determined that the presence of tallgrass prairies and seasonal, agricultural “cover crops”5 can arrest the phosphorous and nitrogen that historically has streamed directly into feeder streams and large watersheds like the Maumee River Basin.

On the matter of cover crops, it is important to note that wheat is planted in closely-spaced rows. Non-row crops include hay and alfalfa, planted en masse, not in rows. Alfalfa, because it is grown as a crop and is harvested, is not generally regarded as a cover crop. Cover crops are seldom, if ever, “cropped,” or harvested. Instead they are killed, or die, and left on the soil surface. Generally, cover crops are not true cash crops in the sense of harvesting and marketing.

Ohio prairie researcher John Blakeman found that edge-of-field strips of perennial tallgrass prairies can absorb algal nutrients in storm-water runoff, thus protecting the waterway while also enriching the prairie plants, or forbs. The tallgrasses and forbs (“wildflowers”) of native tallgrass prairies include big bluestem (Andropogon gerardii), Indian grass (Sorghastrum nutans), switch grass (Panicum virgatum) and a dozen or more species. All of these once grew naturally in northwest Ohio and exist today in a few “remnant prairie” ecosystems. Thus tallgrass prairies can be commercially planted with success in Ohio.

From John’s research with colleagues and published supportive findings from Iowa State University, he developed methods of planting a robust mix of native Ohio prairie species. He has planted them in several sites, including the NASA Glenn Research Center’s large Plum Brook Station near Sandusky, Ohio. Iowa State University has proved the ability of the prairie plants to absorb the renegade nutrients. The critical step is to persuade those engaged in Ohio agriculture to plant 30–60’ strips of tallgrass prairie species along the downslope edges of row-crop fields, where runoff water percolates before draining downstream to Lake Erie.

Jones_130520_IA_8937.jpgTallgrass Prairie, University of Southern Iowa.

Criticality? High. 

With these strips, Iowa research shows that up to 84% of the nitrogen runoff and 90% of the phosphorous can be captured by the plants, and the water running into the river is virtually clean. The levels of nitrogen and phosphorus exiting the field can no longer foster blooms of toxic green algae, such as those that crippled Toledo’s water supply in 2014.

Vulnerability beyond Lake Erie?

Non-point source pollution (i.e. sediment and nutrient runoff from ever-more-intense rainfall events onto rural row-crop fields, suburban fertilized lawns, and massive expanses of roadway and urban pavement) lies at the root of Lake Erie’s problem. This problem however extends beyond harmful algal blooms in streams, lakes, and Toledo’s drinking water source. It is the cause of huge hypoxic zones in the Great Lakes, the Gulf of Mexico (from the Mississippi River drainage), and North American eastern coastal waters.

Some good news?

Several Ohio farmland stakeholders are listening and learning about prairie grass strips at field edges. They are considering how to research and demonstrate upland prairie nutrient-retention strips so more farmers, in time, might use this algal nutrient-suppression practice. Expansive adoption of these strips will reduce phosphorous and nitrogen runoff from agricultural lands, helping obviate harmful algal blooms in Lake Erie.

Jones_130520_IA_8938.jpgTallgrass Prairie, University of Southern Iowa.

All communities need to reduce non-point source pollution. There are many ecological practices communities can practice, including:

  • decreasing suburban and urban pavement
  • increasing tallgrass and forb plantings
  • designing prairie and wetland drainage swales
  • conserving water use

If we all understand the sources of pollution and commit to take action, it will only be a matter of time before other watersheds in Ohio and across the country increase their water quality by using upland prairie nutrient-retention strips and thus also expand green spaces.

How can you be part of the solution?

First, become informed. Many US federal, state and community governments are measuring and attempting to act on non-point source pollution. Learn more about your state and community programs.

Second, take action by changing your and your family’s personal water use. Change your home and neighborhood water and rainwater practices. Here are some suggestions from The Nature Conservancy.

Jones_130520_IA_8935.jpgTallgrass Prairie, University of Southern Iowa.

Lastly, connect back with No Water No Life. Let us know how you and your neighbors outreach to community, state, and federal government leaders is changing infrastructure and community water resource practices.

The strongest governments on earth cannot clean up pollution by themselves. They must rely on each ordinary person, like you and me, on our choices, and on our will.  –2015 Chai Jing, Chinese investigative reporter, and documentary film maker.

 

Footnotes:

1The capacity, over 127 trillion gallons, is extrapolated from USEPA Lake Erie Water Quality report, which notes the water volume as 484 cm3.
2 Toledo Division of Water Treatment.
3 The Florida DEP states, “Microcystins are nerve toxins that may lead to nausea, vomiting, headaches, seizures and long-term liver disease if ingested in drinking water.”
4 US News.
5 Cover crops are quick-growing, short-lived, low-height plants planted to give full coverage of bare soil, in the dormant seasons, (fall, winter, early spring). They are short-lived; serve only to cover the soil to reduce erosion; and retard growth of weeds before row-crops are planted.

 

All photos © Alison M. Jones unless otherwise stated.

The Water Scarcity Problem That’s Destroying Countries Pt. 2: The Consequences

February 13, 2018

Guest Blog by John Hawthorne

The main aspects of economic water scarcity are:

  • A lack of infrastructure with poor sanitation policies. The population has no other choice but to rely on rivers and lakes for their hydration.
  • Much of the water is used for agriculture and domestic chores. Evidence suggests that in many cases the water is “recycled” for different uses. Bathing, laundry, livestock, cleaning and cooking water not only comes from the same source but is oftentimes reused from one chore to another.
  • Large parts of the world, particularly in Africa, suffer from economic water scarcity. Developing the right infrastructure would lower the poverty line.
  • Terrorist groups and local warlords use their own wealth and resources to create the needed infrastructure, the major caveat being that they control the pipeline and in turn use it for their own goals – mainly recruitment.
  • Developing infrastructure in these areas not only requires funding but a complete overhaul of socio-political doctrines.

shutterstock_648093169.jpg

Consequences of water scarcity:

  • Using unclean water, in many areas, leads to an upswell of different disease, some of which are fatal.
  • In Africa, women spend half of their day walking and hauling up water from a clear source. The same goes for sections of India and Latin America. It is estimated that in the remotest parts of Africa, the female population spends a combined total of 40 billion hours a year walking to and from a well.
  • Communities don’t have the time to grow. Most families waste a great deal of their productive hours dealing with the problems that arise from water scarcity. Access to clean water gives families time to go to school and earn an adequate income, helping them fight off poverty.
  • It takes an enormous amount of water to grow crops, maintain livestock and ultimately feed a nation. Less water means a rise in endemic and localized famine.
  • Less water means less sewage flow and more stagnant water. These pools, particularly in tropical and subtropical environments, often become fast breeding ground for insects and parasites. One of the most far reaching and prevalent insects is the mosquito, a known carrier of West Nile Virus, malaria, zika and other infections.
  • Economies that, due to their natural landscapes could easily increase their gross income and national wealth through a busy tourist trade, have had no other choice but to closethis venue of revenue. Hotels, restaurants, shopping stores and other attractions no longer are able to maintain an adequate level of sanitation for visitors.

shutterstock_385317616.jpg

Countries with a high degree of water scarcity:

All countries suffer from water scarcity in one way or another.

For example, the United States, a nation that takes for granted the gift that is drinkable tap water, is in the midst of a major water crisis. The Western States, among them California, are having to cut back on water delivery to certain areas. The Metropolitan Water District of Southern California, the region’s water supplier, will deliver 15% less water to cities in the greater Los Angeles area starting in July 2018.

Nonetheless, the US and other first world nations have the advantage of a growing and confident economy, one that can acclimate itself to any sort of natural woe by investing heavily in infrastructure.

Others are not so lucky. 3 countries standing on the brink of complete water related collapse are:

  • Yemen: According to UPI, Yemen’s capital, Sanaa, is expected to be the first major city in the world to experience full water scarcity, a direct result of the many turmoils and local military brews of the area.
  • Libya: Another war torn country that’s facing a full sanitary cataclysm, the constant regime changes and wild political upheavals are taxing the nation’s capacity to create a viable water policy.
  • Jordan: The country of Jordan finds itself in one of the driest geographical latitudes in the planet. Its only source of water is the Dead Sea and the Jordan River. Transforming saltwater to fresh is a financial hurdle that’s hurting their weak economy.

Conclusion

The United Nations considers water scarcity to be one of the most detrimental and crippling crisis attacking struggling economies and communities.

The Millennium Development Goals (8 fundamental objectives established by a committee of different nations within the United Nation) established the necessity of making water scarcity a key problem to eradicate. The United Nations Millennium Declaration, following the Millennium Summit, aimed by 2015 to “halve the proportion of people who are unable to reach or to afford safe drinking water.”

While we may not have solved the problem of water scarcity, we’re certainly making an effort to minimize the problem in as many ways as possible.

Audrey Hepburn said, “Water is life, and clean water means health.”

She knew what she was talking about.

 

John Hawthorne is a health nut from Canada with a passion for travel and taking part in humanitarian efforts. His writing not only solves a creative need it has also lead to many new opportunities when traveling abroad. This article was republished with his permission. The original article can be found here.

World Wetlands Day 2018

February 6, 2018

World Wetlands Day – February 2, 2018
blog by Sarah Kearns, NWNL Project Manager

BOT-OK-107.jpgOkavango Delta, Botswana, Africa

What are “wetlands”?

Synonyms: Marsh, fen, bog, pothole, mire, swamp, bottomlands, pond, wet meadows, muskeg, slough, floodplains, river overflow, mudflats, saltmarsh, sea grass beds, estuaries, and mangroves.

Jones_070605_BC_1624.jpgDevelopment on edge of Columbia Wetlands, British Columbia

Worldwide, wetlands regulate floods, filter water, recharge aquifers, provide habitat, store carbon, and inspire photographers & artists.

Jones_111024_LA_8655.jpgCyprus trees in Atchafalaya River Basin Wetlands, Louisiana

Wetlands control rain, snowmelt, and floodwater releases: mitigation that is more effective and less costly than man-made dams. Nearly 2 billion people live with high flood risk – This will increase as wetlands are lost or degraded.

Jones_091004_TZ_2124.jpgFishing boats among invasive water hyacinth in Lake Victoria, Tanzania

Wetlands absorb nitrogen and phosphorous which provides cleaner water downstream for drink water supplies, aquifers and reservoirs.

Jones_091002_TZ_1209.jpgWoman collecting water in Maseru Swamp, Tanzania

Wetlands absorb heat by day and release is at night, moderating local climates.

Jones_111021_LA_2490.jpgRed-earred turtles in Bluebonnet Swamp, Baton Rouge, Louisiana

We all need the clean air, water, and protection from flooding that wetland forests provide. But up to 80% of wetland forests in the US South have disappeared. What are our standing wetland forests worth? Let’s be sure we invest in our wetland forests. (From dogwoodalliance.org)  Worldwide, we must protect our wetlands.

Jones_150817_AZ_5849.jpgSouthern tip of Lake Havasu and incoming Williams River and its wetlands, Arizona

To learn more about World Wetlands day visit http://www.worldwetlandsday.org.

All photos © Alison M. Jones.

 

%d bloggers like this: